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INTRODUCTION
The Yakutat block in the Gulf of Alaska has 

been colliding with the North American plate 
in a 600-km-long orogenic belt over ~10 m.y. 
(Plafker et al., 1994; Rea and Snoeckx, 1995). 
This collision has resulted in underthrusting of 
~600 km of Yakutat crust and has generated a 
fl at-slab subduction zone with a subhorizontal 
Wadati-Benioff zone (Fig. 1) that occupies a gap 
in the Aleutian magmatic arc (e.g.,  Eberhart-
Phillips et al., 2006). The broad Chugach–
St. Elias orogeny is formed by this collision, and 
includes the highest coastal relief in the world; 
it is bound to the north by the Denali fault sys-
tem and Wrangell volcanic fi eld. To the south, 
the Pacifi c plate slides in a right-lateral sense 
past the North American plate along the Queen 
Charlotte–Fairweather fault system to the east 
and subducts beneath the North American plate 
along the Aleutian trench to the west. In between, 
the Pacifi c lithosphere appears to be subdivid-
ing, based on a 1987–1992 earthquake swarm. It 
is doing so along a north-south lineament that is 
likely reactivated, spreading ridge-parallel fault-
ing (Pegler and Das, 1996), that we refer to as 
the Gulf of Alaska shear zone (Fig. 1).

Interpretations of existing data on the 
 Yakutat-Pacifi c boundary, the Transition fault, 
are controversial, including whether the fault 
existed during initial Yakutat–North American 
collision. The Transition fault (Fig. 1) has been 
variably described as a rejuvenated left-lateral 

fault with only minor Pliocene–Pleistocene  
motion (Bruns, 1983), a dextral-oblique fault 
(Lahr and Plafker, 1980), and a low-angle 
thrust (e.g., Perez and Jacob, 1980; Plafker 
et al., 1994; Fletcher and Freymueller, 2003). 
Conversely, its lack of seismicity (Page et al., 
1989) and local burial by undeformed or 
weakly deformed sediment (Bruns, 1985) sug-
gest that the Yakutat block is essentially mov-
ing with the Pacifi c plate.

The nature of the Transition fault is critical 
to understanding the Yakutat collision with its 
far-fi eld tectonic effects (Mackey et al., 1997; 
 Mazzotti and Hyndman, 2002). We present 
a revised tectonic model for the Transition 
fault that uses evidence for an unusually thick 
Yakutat block, the presence of the 1987–1992 
Gulf of Alaska earthquake sequence, and cur-
rent plate motions to explain seismic and bathy-
metric observations of faulting.

SEISMIC AND BATHYMETRIC DATA
Methods

In 2005, more than 162,000 km2 of high-
resolution  (~100 m) multibeam sonar data 
were collected along the base of the slope in 
the Gulf of Alaska in support of a potential 
U.S. submission for an extended continental 
shelf (Gardner et al., 2006). These data were 
collected aboard the R/V Kilo Moana, which 
is equipped with a hull-mounted Kongsberg 
EM120 (12 kHz) multi beam echo sounder that 
generates 191 1° × 2° beams over a 150° swath. 
Frequent sound-speed profi les and an Applanix 

POS-MV inertial motion unit interfaced with 
a NovAtel OEM2–3151R global positioning 
system (GPS) allowed conversion of traveltime 
to depth, including a water-column refraction 
correction, and compensation for roll, pitch, 
and yaw. Spacing of individual soundings is 
~50 m and vertical accuracy is ~0.3%–0.5% of 
the water depth.

In 2004, 1800 km of high-resolution  seismic-
refl ection profi les were collected in the Gulf of 
Alaska aboard the R/V  Maurice Ewing as an 
Integrated Ocean Drilling Program site survey. 
The sources were dual 45/45 in3 GI (generator/
injector) airguns with a better than 5 m vertical 
resolution. Processing included trace regular-
ization, normal moveout correction, bandpass 
fi ltering, muting, f-k (frequency-wave number) 
fi ltering, stacking, water-bottom muting, and 
fi nite-difference  migration. These profi les add 
to thousands of kilometers of basin-scale seis-
mic data collected by private industry and the 
U.S. Geological Survey (USGS) (Bruns, 1983, 
1985; Bruns and Carlson, 1987).

Observations
Bathymetry data show linear ridges in the 

seafl oor sediment along the base of the slope 
that separates the Yakutat block from the Pacifi c 
plate (Fig. 2B1), where the Transition fault is 
expected. A single fault trace is observed in the 
southeast, where it truncates a series of small 
fans at the base of slope for ~100 km. To the 
northwest, near the Pamplona fold-and-thrust 
belt, there are two linear escarpments (including 
Yushin Ridge) with signifi cant seafl oor relief that 
are interpreted as active faults. The outer strand 
in the northwest appears in line with the single 
strand in the southeast, whereas the inner strand 
lines up with a smaller section of bathymetric 
relief just southeast of the Yakutat sea valley 
(Fig. 2B). The transition in steepness between 
slope (~12°) and Surveyor Fan sediments (~2°) 
implies that the base of slope is structurally con-
trolled. We suggest that these zones of relief are 
all part of the Transition fault system.

These observations are consistent with our 
remigration of a USGS profi le (Fig. 3) that 
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crosses the Yakutat-Pacifi c boundary southeast 
of the Yakutat sea valley. The migrated image 
shows an active, near-vertical fault at the base of 
slope and an inactive backthrust just landward 
of the near-vertical fault. However, USGS lines 
crossing the boundary downslope of the sea val-
ley do not show faulting active enough to offset 
the upper several hundred meters of sediment 
(Bruns, 1985; Pavlis et al., 2004).

In the southeastern Yakutat block, three high-
resolution refl ection profi les image a subvertical 
fault that offsets sediments to the seafl oor (one 

profi le is shown in Fig. 2A). This fault was pre-
viously imaged at lower resolution on USGS 
data and named the Icy Point–Lituya Bay fault; 
no such faults are observed in available seismic 
data anywhere else within the Yakutat block 
southeast of the Pamplona fold-and-thrust belt 
(Bruns, 1983; Bruns and Carlson, 1987). The 
Icy Point–Lituya Bay fault is southwest of the 
mapped Fairweather transform fault, is within 
the Yakutat block (Fig. 2), and strikes southeast 
to northwest. Based on differential offsets of 
strata across the fault, lack of any growth strata, 

and its near-vertical orientation, it is almost cer-
tainly a strike-slip fault (Fig. 2A).

On all three profi les, the older sediments 
beneath the strike-slip fault show convergent 
folding and faulting; thus, the strike slip is a later 
phase (e.g., Fig. 2A). Only ~200 m of sediment 
were deposited during the interval cut by the 
strike-slip fault. Holocene sediments, observed 
in depositional lows such as where these profi les 
are located, as thick as 300 m (Jaeger et al., 1998) 
and shelf-wide Holocene sedimentation rates 
estimated to be 7.9 mm/yr (Sheaf et al., 2003) 
suggest that the 200 m of sediment were depos-
ited in fewer than 300 k.y. While the age of the 
fault is unclear, the sediments document a recent 
transition from compression to translation.

DISCUSSION
Bathymetric data suggest that the modern 

Transition fault is present along the Pacifi c-
Yakutat boundary and that activity is focused on 
one strand to the southeast and distributed along 
two strands to the northwest, where it merges 
with the Pamplona fold-and-thrust belt (Fig. 2B). 
The southeastern single strand appears to have 
matured into a true strike-slip fault (Fig. 3), 
whereas distributed strain to the northwest may 
be a propagating system still in its oblique-slip 
phase (e.g., Gulick and Meltzer, 2002).

Any model predicting translation along the 
Transition fault must explain both the plate 
kinematics that allow for this translation and 
how seismicity refl ects these kinematics. The 
existence of a recent change from compression 
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to strike-slip faulting within the Yakutat block 
between the Fairweather fault and the Pacifi c-
Yakutat boundary (Fig. 2A) suggests that the 
Queen Charlotte–Fairweather fault system is 
extending offshore and provides a structural 
mechanism for transferring strike-slip motion to 
the Yakutat-Pacifi c boundary.

Three main foci of seismicity (Fig. 1A) help 
defi ne the plate kinematics: (1) thrust events 
along the eastern edge of the Pamplona zone 
(Doser et al., 1997), (2) thrust events at the 
eastern end of the Transition fault (Doser and 
Lomas, 2000), and (3) dextral strike-slip events 
along the Gulf of Alaska shear zone within the 
Pacifi c plate (Pegler and Das, 1996). We suggest 
a tectonic model of the plate boundaries (Fig. 
4A) that is consistent with these earthquake 
sequences, with bathymetric and seismic obser-
vations, and with recent tomographic results 
(Eberhart-Phillips et al., 2006).

Plate velocities based on GPS (Fletcher and 
Freymueller, 2003) and NUVEL-1A (DeMets 
et al., 1994), assuming that the north Pacifi c 
moves as a single plate, would require signifi -
cant thrusting along the Transition fault. We 
propose an alternate model where dextral events 
along the Gulf of Alaska shear zone highlight 
the western edge of an eastern Pacifi c block 
with implications for motion along the Transi-
tion fault (Fig. 4A). Examination of a range of 
possible plate velocities allows for construction 
of velocity triangles for three locations along the 
Transition fault (Fig. 4B). These velocities pre-
dict dextral oblique motion in the eastern part 
of the fault, virtually no motion in the central 
segment, and transpression in the western seg-
ment; none of the predicted velocities exceed 
10 mm/yr, a low rate that is consistent with 
burial in regions of highest postglacial accumu-
lation and limited seismicity.

Our proposed model includes: (1) the dex-
tral Gulf of Alaska shear zone localized along 
a preexisting zone of weakness in the Pacifi c 
plate, (2) transpression between the Pacifi c plate 
and the Yakutat block west of this deformation 
zone, and (3) an evolving plate boundary, the 
Transition fault, to the east of this zone. From 
the Yakobi to Yakutat sea valleys (Fig. 2B), the 
Transition fault is an east-west–propagating 
strike-slip boundary. From the Yakutat sea val-
ley west, the Transition fault is transpressional 
and merges with the Pacifi c strike-slip fault and 
Pamplona fold-and-thrust belt (Fig. 4A). The 
overall shape of the continental margin supports 
this model with a change in width and strike at 
this location (Figs. 1A and 2B).

Traditionally, the Yakutat block was thought 
to be fl ysch and melange east of the Danger-
ous River zone (Fig. 1A) and oceanic crust west 
of it (Plafker et al., 1994). However, refraction 
observations from near Kayak Island (Brocher 
et al., 1994), tomographic observations onshore 
collected as part of the BEAAR (Broadband 
Experiment Across the Alaska Range) experi-
ment (Ferris et al., 2003), and a regional com-
pilation (Eberhart-Phillips et al., 2006) instead 
suggest that the Yakutat block is a 15–20-km-
thick mafi c body. The Yakutat block may be 
an oceanic plateau (Pavlis et al., 2004) whose 
collision generates fl at-slab subduction and the 
associated gap in the volcanic arc, broad regions 
of elevated topography, and far-fi eld tectonic 
effects (Mackey et al., 1997; Mazzotti and 
 Hyndman, 2002).

We envision that the Yakutat block arrived in 
the Gulf of Alaska attached to the Pacifi c plate 
ca. 10 Ma, and that the earliest stage of fault-
ing along the Pacifi c-Yakutat boundary occurred 
during the initial phase of collision. The strong, 
thick mafi c Yakutat block may have partially 
underthrusted the North American plate, causing 
regional tilting of the plateau and reverse fault-
ing at its seaward edge. This tilting and faulting 
are exemplifi ed by the ~2 km of uplift near Fair-
weather ground (Fig. 1A) (Bruns, 1983, 1985) 
and the seaward thinning of the continental mar-
gin sediments (e.g., Bruns and Carlson, 1987). 
The reverse faulting along the Yakutat-Pacifi c 
boundary that existed from the Eocene to early 
Miocene (Bruns, 1983) likely provided the zone 
of weakness through which the Pleistocene to 
modern Transition fault propagated.

It is unlikely that the Pacifi c plate has under-
thrust the Yakutat block along the exposed 
Transition fault (Bruns, 1985), as has been 
suggested (e.g., Fletcher and Freymueller, 
2003; Doser and Lomas, 2000). The 5–7-km-
thick Pacifi c crust abuts the 15–20-km-thick 
Yakutat crust at mid-crustal depths, making 
subduction unlikely despite the uplifted edge 
of the block. Earthquake locations confi rm 
the lack of underthrusting along the Pacifi c-
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Yakutat boundary with the notable exception 
of Prince William Sound, where, due to the 
Pacifi c plate subducting more steeply than the 
Yakutat block, limited underthrusting is pos-
sible (Eberhart-Phillips  et al., 2006).

If the Yakutat block is an oceanic plateau, 
then it is a rare example of in situ subduction 
of a large igneous province. The Yakutat colli-
sion may be representative of a moderate-sized 
plateau collision, wherein the oceanic plateau 
initially subducts successfully without its upper 
layers being peeled or fl aked off (Oxburgh, 
1972; Hoffman and Ranalli, 1988; Kimura and 
Ludden, 1995). Due to its buoyancy, a fl at-slab 
subduction zone is formed that is resistant to 
subduction; if a plateau is large enough, subduc-
tion may eventually stall, causing plate bound-
ary reorganization such as we observe in the 
Gulf of Alaska.

CONCLUSIONS
We propose a tectonic model for Yakutat-

Pacifi c interactions that is based on mapped 
faults, seismicity, plate motions, and evidence 
that the Yakutat block may be anomalously 
thick. To the east, the Queen Charlotte–
Fairweather  fault system is extending offshore, 
facilitating westward propagation of strike-slip 
motion along the eastern segment of the Tran-
sition fault. To the west, the transpressional 
Pamplona zone and Transition faults merge 
at an embayment in the continental margin 
where the Gulf of Alaska shear zone within 
the Pacifi c plate intersects the Pacifi c-Yakutat 
boundary. These fault patterns are consistent 
with current plate motions and refl ect a plate 
boundary reorganization that may be caused 
by resistance to subduction by the Yakutat 
block. Such reorganizations may be illustrative 
of the effects of moderate-sized plateau colli-
sions, their kinematics being controlled by pre-
existing zones of weakness, neighboring plate 
boundary geometries, and plate motions.
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