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ABSTRACT 

Image-based modeling and rendering is currently one of the most challenging topics in Computer Vision and 

Photogrammetry. The key issue here is building a set of dense correspondence points between two images, namely 

dense matching or stereo matching. Among all dense matching algorithms, Semi-Global Matching (SGM) is arguably 

one of the most promising algorithms for real-time stereo vision. Compared with global matching algorithms, SGM 

aggregates matching cost from several (eight or sixteen) directions rather than only the epipolar line using Dynamic 

Programming (DP). Thus, SGM eliminates the classical “streaking problem” and greatly improves its accuracy and 

efficiency. In this paper, we aim at further improvement of SGM accuracy without increasing the computational cost. 

We propose setting the penalty parameters adaptively according to image edges extracted by edge detectors. We have 

carried out experiments on the standard Middlebury stereo dataset and evaluated the performance of our modified 

method with the ground truth. The results have shown a noticeable accuracy improvement compared with the results 

using fixed penalty parameters while the runtime computational cost was not increased. 
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1. BACKGROUND 

Depth information in our environment has a wide range of applications, such as land surveying, driverless 

assistance system and indoor navigation, etc. The depth information can be estimated through the dense matching 

procedure applied to two images from a stereo camera system.  The dense matching is the most crucial step in the 

processing pipeline. Current dense matching algorithms can be basically divided into two categories: local algorithms 

and global algorithms. Local methods compare correspondence one point at a time, without consideration of 

neighboring points/measures, while global methods seek a disparity assignment that minimizes a global cost function 

which typically includes a data term and a smoothness term. Local methods are much faster than global methods but 

they usually suffer from a lack of smoothness in the final disparity map. Semi-Global Matching (SGM) as proposed 

by Hirschmuller [1, 2] combines the advantages of the above two methods with lower computational complexity for 

real-time needs given limited hardware resources and is able to achieve high precision depth estimation. Currently it 

is one of the most advanced and efficient dense matching algorithms which has proved to be successful in DSM 

generation [3] and driver assistance systems [4]. Two major research directions are being carried out in further 

development of this algorithm. The first direction is the optimization and acceleration of implementing SGM on 

different hardware architectures. This type of research focuses on the algorithm implementation on Graphics 

Processing Units (GPU) [5, 6] and on seeking efficiency improvement on the CPUs [7, 8]. Another research direction 

concentrates on improvement and evaluation of SGM regarding its accuracy and computational complexity and 

memory requirements. Within [1] a hierarchical approach using image pyramid was proposed to initialize and refine 

matching cost. The disparity of the higher level pyramid is used to refine the matching cost calculation for the lower 

level in order to accelerate convergence speed for higher levels. In [9] the accuracy of four different penalty functions 

in the cost aggregation step under two different types of matching cost calculation has been evaluated. Hirschmuller 

et al. [10] experimented with different cost calculation methods in three different stereo algorithms and concluded that 

hierarchical mutual information performed best for pixel-based global matching methods like SGM. Michael et al. 

[11] proposed using individual adaptive penalties for different path orientations where each path has its own weight 

and four penalty parameters which depend on intensity gradients (no edge selection). A large amount of data has to be 

considered for tuning such high numbers of parameters. In this paper, we propose an adaptive way for adjusting penalty 

parameters based on image edges for the reality that the image edges normally indicates disparity discontinuity. For 

the experiments, we consider the well-known Middlebury benchmark dataset [12] and evaluate the performance of our 

proposed modification by comparing the results with the ground truth.  
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The structure of this paper is organized as follows. The review of the original Semi-Global Matching algorithm is 

given in Section 2. We then shortly introduce and explain the edge-based SGM algorithm and present the experimental 

results and their evaluation in Section 3. The conclusion of our work and further improvements in the near future are 

briefly introduced in Section 4.  

 

2. SEMI-GLOBAL MATCHING 

2.1. Matching Cost Calculation with Mutual Information 

Pixel Mutual Information (MI) is considered to be insensitive to recording and illumination changes [1]. The 

original SGM method uses MI as its pixel matching cost. It has been found out by Hirschmuller et al. [10] that the 

mutual information has better performance for most cases with SGM compared with other matching cost calculation 

methods like Birchfield and Tomasi (BT) interpolation [13]. MI comes from the theory of signal processing and is 

defined by the entropies H of the input two images 𝐼1 and 𝐼2 and their joint entropy 𝐻𝐼1,𝐼2
: 

                                                                         𝑀𝐼𝐼1,𝐼2
= 𝐻𝐼1

+ 𝐻𝐼2
− 𝐻𝐼1,𝐼2

                                                              (1) 

The entropies are calculated from the image intensity probability distribution P: 

                                                                          𝐻𝐼 = − ∫ 𝑃𝐼(𝑖)𝑙𝑜𝑔𝑃𝐼(𝑖)𝑑𝑖
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(𝑖1, 𝑖2)𝑑𝑖1𝑑𝑖2                                             
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Kim et al. [14] transformed the entropy calculation into discrete space using Taylor expansion. As a result, the 

joint entropy is calculated as a sum of data terms that depend on corresponding intensities of a pixel p: 

                                                                                  𝐻𝐼1,𝐼2
= ∑ ℎ𝐼1,𝐼2

(𝐼1𝑝, 𝐼2𝑝)                                                                         𝑝 (4) 

                                          ℎ𝐼1,𝐼2
(𝐼1𝑝 , 𝐼2𝑝) = −

1

𝑛
log (𝑃𝐼1,𝐼2

(𝑖, 𝑘)⨂𝑔(𝑖, 𝑘)) ⊗ 𝑔(𝑖, 𝑘)                                                         (5) 

The single image entropy is calculated by the following equation 

                                                                 𝐻𝐼 = ∑ ℎ𝐼(𝐼𝑝)𝑝                                                                                                               (6) 

                                                                   ℎ𝐼(𝑖) = −
1

𝑛
log(𝑃𝐼(𝑖) ⊗ 𝑔(𝑖)) ⊗ 𝑔(𝑖)                                                                   (7) 

Where P  is the intensity distribution, n  is the number of total correspondences and g  denotes Gaussian 

convolution. 

The resulting definition of MI is hence 

                                                              𝑀𝐼𝐼1,𝐼2
= ∑ 𝑚𝑖𝐼1,𝐼2

(𝐼1𝑝,𝐼2𝑝)𝑝                                                                                     (8) 

                                                              𝑚𝑖𝐼1,𝐼2
(𝐼1𝑝,𝐼2𝑝) = ℎ𝐼1

(𝑖) + ℎ𝐼2
(𝑖) − ℎ𝐼1,𝐼2

(𝑖, 𝑘)                                                              (9) 

Therefore, the matching cost based on MI is defined as  

                                                                            𝐶𝑀𝐼(𝑝, 𝑑) = −𝑚𝑖𝐼1,𝐼2
(𝐼𝑏𝑝,𝐼𝑚𝑞)                                                                           (10) 

Where q is the corresponding pixel in match image of p in base image with disparity d 

                                                         q = 𝑒𝑏𝑚(𝑝, 𝑑)                                                                                                                    (11) 

Since the calculation of the joint intensity distribution requires an initial disparity map to warp the match image 

towards the base image, the SGM uses an iterative computation strategy where the initial disparity map is assigned 

randomly. 
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2.2. Cost Aggregation 

Traditionally, the 1D energy E(D) of a disparity map D is calculated using the following equation 

            E(D) = ∑ (𝐶(𝑝, 𝐷𝑝) + ∑ 𝑃1𝑇[|𝐷𝑝 − 𝐷𝑞| = 1]𝑞∈𝑁𝑝
+ ∑ 𝑃2𝑇[|𝐷𝑝 − 𝐷𝑞| > 1]𝑝∈𝑁𝑝

)                                         𝑝 (12) 

The first data term is the sum of matching cost for all pixels p. The second term adds a constant penalty 𝑃1 for all 

the neighboring pixels 𝑞 of pixel 𝑝 if the disparity of 𝑞 is different from the disparity of 𝑝 by 1. The third data term 

adds a larger constant value 𝑃2 for all the neighboring pixels 𝑞 if the disparity difference between 𝑝 and 𝑞 is larger 

than 1. The problem of stereo matching is formulated as a problem of finding the disparity image D that minimizes 

the energy function E(D). This global minimization problem is NP-complete and can be efficiently solved using 

Dynamic Programming (DP) [15]. However, it is well known that this minimization along separate epipolar lines is 

causing the “streaking problem” [15] due to independent processing between image rows. SGM solves this problem 

by aggregating matching cost from many different directions.  

Figure 1 Cost aggregation. Left: 16 paths cost aggregation at a pixel 𝑝 in 2D image space. Right: illustration of horizontal path 

cost structure on a single image row. 

This is done through summing the costs of all 1D minimum cost paths that end in the pixel 𝑝 at disparity 𝑑 as 

illustrated in Figure 1 (left). The matching cost 𝐿𝑟(𝑝, 𝑑)  of pixel 𝑝 at disparity 𝑑 along one particular path is calculated 

recursively by the following equation: 

𝐿_𝑟 (𝑝, 𝑑) = 𝐶(𝑝, 𝑑) + min (𝐿_𝑟 (𝑝 − 𝑟, 𝑑), 

                                                                                  𝐿𝑟(𝑝 − 𝑟, 𝑑 − 1) + 𝑃1,                                                       (13) 
𝐿𝑟(𝑝 − 𝑟, 𝑑 + 1) + 𝑃1, 

min 𝐿𝑟(𝑝 − 𝑟, 𝑖) + 𝑃2) − min 𝐿𝑟(𝑝 − 𝑟, 𝑘) 

The first term is the matching cost as it is in the energy function E(D). 𝑝 − 𝑟 is the previous pixel along the path. 

The last term is subtracted from the aggregated cost to avoid number overflow and this term is the same for all the 

disparities of pixel 𝑝. The final cost of pixel 𝑝 at disparity 𝑑 is the sum of all costs from all paths. 

                                                                S(p, d) = ∑ 𝐿𝑟(𝑝, 𝑑)𝑟                                                                                                (14) 

2.3. Disparity Computation 

After computing the matching cost cube, the disparity of a pixel p is determined by selecting the disparity that 

corresponds to the minimum cost from its disparity search range, that is 𝑚𝑖𝑛𝑑𝑆[𝑝, 𝑑]. Hence the disparity image that 

corresponds to the base image 𝐷𝑏  is obtained. The disparity image that corresponds to the match image 𝐷𝑚 can also 

be determined from the same costs as well by traversing the epipolar line that corresponds to the pixel q of the match 

image. For sub-pixel disparity accuracy, a quadratic curve is fitted using neighboring costs next to the disparity that 

has the minimum cost. The occlusions and false matches can be determined by performing a consistency check 

between 𝐷𝑏  and 𝐷𝑚. This consistency check enforces the uniqueness constraint by permitting one to one mapping 

only.  
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Summarizing, the algorithm steps for the SGM computation are: 

1. Cost computation 

2. Cost aggregation 

3. Minimum cost determination 

4. Sub-pixel interpolation 

5. Median filter 

6. Right-to-left consistency check 

 

3. PROPOSED BINARY ADAPTIVE SGM AND EXPERIMENTS 

The penalty parameters 𝑃1 and 𝑃2 used in original SGM are fixed constants during the aggregation process. We 

propose to incorporate a binary adaptive property into the original Semi-Global Matching algorithm based on image 

edges extracted by edge detectors. The edges used in this paper are defined to be points where there is a boundary (or 

an edge) between two image regions. In another words, we propose to use a smaller penalty parameter at image edges 

and a larger penalty at non-edge areas. This is reasonable since image edges which are typically object boundaries are 

more likely to indicate depth discontinuity. Thus, a smaller penalty should be used at image edges in order to give 

more freedom and to allow disparity changes. However, it should be also noted that even when edges are detected 

because of object texture rather than depth discontinuity, the penalty parameters will not affect the disparity estimation 

since the disparity with the minimum matching cost will remain minimum regardless of what penalty parameters are 

used there. Hence in our implementation, we have in total three different penalty parameters 𝑃1, 𝑃2 and 𝑃3 where 𝑃3 >
𝑃2 > 𝑃1. In the cost aggregation step, 𝑃1 is added to the cost as it does in the original algorithm for neighboring pixels 

whose disparity changes a little bit (1 pixel). For the neighboring pixels whose disparity changes more than 1 pixel, 

𝑃3 is added to the matching cost if the pixel is located at image edges, otherwise the smaller penalty 𝑃2 is added to the 

matching cost.  

We performed our experiments on the standard Middlebury stereo datasets, specifically, “cones”, “teddy”, and 

“tsukuba”. We implemented the SGM algorithm in 8 paths rather than 16 paths. Only the median filter is applied after 

the initial disparity map is obtained from minimum cost selection. The consistency check and sub-pixel interpolation 

are not implemented because we only expect the qualitative justification of the proposed binary adaptive SGM. We 

use the popular Canny edge detector to extract image edges [16]. The performance of the proposed algorithm is 

evaluated by comparison of the results with the ground truth to see how much accuracy improvement could be achieved 

under these conditions. The parameters used in our experiment are 𝑃1 = 5, 𝑃2 = 7, 𝑃3 = 8. We estimated the Root-

Mean-Squared (RMS) error using the following equation 

 R = (
1

𝑁
∑ |𝑑𝐶(𝑥, 𝑦) − 𝑑𝑇(𝑥, 𝑦)|2

(𝑥,𝑦) )
1

2 (15) 

Figure 2 shows the original image, the Canny edge image, the ground truth, the disparity map obtained through 

the original SGM and the disparity map obtained through our modified SGM. Table 1 presents the disparity map 

evaluation results for the original SGM and for our modified SGM. The accuracy of the disparity estimation is 

increased by about 6 to 7 percent as can be seen in the table. Note that this improvement does not require additional 

computations or memory cost when compared to the original SGM. We believe that with both consistency and sub-

pixel processing added to the final disparity optimization, the accuracy improvement will become even more 

significant since the base RMS error becomes smaller.  

 Original SGM Binary Adaptive SGM Accuracy Improvement 

RMS(cone) 6.494 6.10 6.16% 

RMS(teddy) 6.405 6.01 6.25% 

RMS(tsukuba) 1.32 1.22 7.58% 

Table 1 Disparity map evaluation results. 
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Figure 2 Experiment Results. Top to bottom row: image, Canny edges, ground truth, SGM depth map and depth map obtained by 

the reported algorithm. 
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4. CONCLUSION AND FUTURE WORK 

In this paper, we propose to use binary penalty parameters based on the image edges extracted by the Canny 

algorithm instead of a single penalty parameter in the Semi-Global Matching algorithm. We experimented with this 

improvement on the standard Middlebury stereo dataset and evaluated its performance. We have found that this 

modification increases the accuracy of the disparity map estimation by approximately 6 to 7 percent without an 

increase of the computational cost. The implementation of this modification is straightforward and can be integrated 

into other SGM variants regardless of hardware configurations since it doesn’t influence the parallelization of the 

original method.  

The Canny detector only indicates presence or absence of sharp gradients in the brightness image with a single 

parameter threshold. However, there exist segmentation algorithms which produce a whole hierarchy of edges 

depending on their strength. In particular the algorithm proposed in [17] segments an image hierarchically thus 

attributing different strengths to different edges. This allows us to introduce a sequence of penalty parameters instead 

of single 𝑃3 . This is a straightforward modification and we will experiment with this in the near future. Another 

possible improvement is associated with taking into account individual color channels. According to estimates in [18] 

this may provide up to 10% more edges compared to grayscale imagery. In general, edge detection in color images is 

a well-researched subject (see [19] for a review). We also plan to experiment with more combinations of these penalty 

parameters in the future in order to optimize their values for different types of images. 
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