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PREFACE 
 
 

Dissertation structure 

This dissertation contains eight chapters, including two chapters that were 

reformatted from peer-reviewed published works, and two chapters that have been 

submitted for publication.  Each chapter stands alone as independent research; however, 

each presents important issues related to seafloor habitat and facies characterization and 

fits into the scope of the dissertation.  As such, the dissertation does not read as a logical 

sequence, and some repetition of topics might occur between chapters.  The introductory 

chapter attempts to provide the background and linkages that make this dissertation a 

coherent work.  The final chapter allows for expansion of, or revision to, ideas presented 

in the chapters, because some conclusions were reinforced by further thought and work, 

and some hypotheses and conclusions were rejected with the introduction of new 

evidence.  

Chapter 1 (“Introduction”) contains an introduction intended to provide context 

and link the topics in the other chapters.   

Chapter 2 (“Seafloor segmentation using texture”) contains the text from a 

publication describing texture feature analysis for unsupervised classification of seafloor 

bathymetry (Cutter et al., 2003).   

Chapter 3 (“Ground truthing using image mosaics”) is based on a publication 

describing the use of image mosaics to ground-truth habitat delineations predicted from 

acoustic maps (Cutter et al., In Press).   



 iv 

Chapter 4 (“Seafloor microtopographical roughness spectra”) represents the text 

from a submitted manuscript describing estimation of parameters from roughness spectra 

of seafloor microtopographical profiles from sediment profile images (Cutter, Submitted).  

Results from spectral analysis of sediment profile imagery (SPI) images from the 

Piscataqua River are provided in Appendix A.  

Chapter 5 (“Facies from the Lower Piscataqua River (Great Bay Estuarine 

System) Characterized using Physical Samples and Video Images”) contains unpublished 

work describing efforts to separately characterize sediment facies using physical sample 

data and seafloor images and methodology and results linking the two approaches.  The 

impetus for this effort was the difficulty presented by having potentially disparate 

information from different data sources.  The goal was to produce comparable 

information from different ground truthing methods and data sources.  The realization of 

that goal is fundamentally important to the process of seafloor characterization using 

bathymetry and backscatter from acoustic data.    

Chapter 6 (“Benthic habitat classification, characterization, and the provisional 

truth of ground-truth”) is based on a publication describing segmentation and 

classification of seafloor bathymetry and backscatter using statistical, textural, and spatial 

methods compared to results from ground truthing and the errors that can be involved 

with uncertainty associated with ground-truth data (Cutter, 2005).  

Chapter 7 (“Supervised classification of gridded multibeam bathymetry data using 

LFH texture features for habitat structure class prediction”) describes work done as a 

demonstration project for the National Oceanic and Atmospheric Administration 

(NOAA) Center for Coastal Monitoring and Assessment, Biogeography Program.  The 
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effort involved prediction of reef habitat structure classes for every 1-by-1 m grid cell 

from a multibeam bathymetry survey area off Saint John, U.S. Virgin Islands.  Habitat 

structure classes identified at points by divers and in video analysis data were used to 

develop prototype Local Fourier Histogram texture features used for supervised 

classification.   

 Chapter 8 (“Summary and Conclusions”) synthesizes the topics of this 

dissertation.  It is intended to put some of the efforts and results in perspective, and to 

provide guidance for researchers involved in similar activities.   
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ABSTRACT 

SEAFLOOR HABITAT CHARACTERIZATION, CLASSIFICATION, AND MAPS 

FOR THE LOWER PISCATAQUA RIVER ESTUARY 

by 

George Randall Cutter, Jr. 

University of New Hampshire, September, 2005 

 Seafloor data from multibeam echosounders, underwater images, and physical 

samples were used to implement segmentations, classifications, and measurements for 

seafloor characterization and habitat mapping.  Texture analysis, using local Fourier 

histogram texture features, was applied to multibeam bathymetry data in unsupervised- 

and supervised-classification modes.  Seafloor video-image mosaics were used to 

characterize biogenic features and verify transitions between habitats and allowed 

descriptions of features that were not determinable from other imagery.  Spectral-model 

parameters (slope and intercept) that are important to models relating acoustic backscatter 

to seafloor properties were calculated to describe roughness from seafloor 

microtopography in sediment profile images (SPI).  SPI spectral-model parameters are 

consistent with published estimates for data from other devices such as sterophotographs, 

and values varied by sedimentary facies and bioturbational regime.  Unsupervised 

classification of bathymetry using texture features produced segmentations that 

corresponded to known spatial distributions of seafloor sediments, but required arbitrary 
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choices for some parameter values and, therefore, included potential bias.  Supervised 

classification of bathymetric texture overcame bias related to arbitrarily-chosen 

parameters, and produced classifications that corresponded well with identified seafloor 

habitats and with ground-truth data.  Similar textures can exist for different seafloor 

attributes.  In general, however, the LFH texture feature classification technique, using 

only gridded bathymetric data, works well to predict spatial distributions of seafloor 

morphologies and structure classes on a per-grid-cell basis and is robust to data noise.  

The results from several classification methods exposed the weakness of ground-truth 

data with high positioning uncertainty relative to the resolution and positioning 

uncertainty for shallow-water multibeam echosounder surveys.  Ground-truth data with 

high positioning uncertainty were not reliable for assessment of delineations and 

classifications of seafloor bathymetry and acoustic backscatter data.  With good ground-

truth data, accurate habitat maps and seafloor characterizations can be produced using 

automated techniques.   
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CHAPTER 1 

1.  INTRODUCTION 

1.1.  Statement of Objectives 

The overarching goal of my dissertation work was to establish means by which 

seafloor habitat characteristics can be imaged, detected, interpreted, and effectively 

mapped.  I reviewed habitat concepts, marine habitat classification schemes, and habitat 

mapping efforts.  Using multibeam echosounder (MBES) bathymetry and backscatter  

data and sidescan sonar (SSS) backscatter data from the Portsmouth, New Hampshire 

common dataset, I implemented current methodologies for habitat delineation, then 

described and applied new semi-automated delineation methods.  I considered data from 

seafloor video mosaics to describe habitat characteristics at smaller spatial scales, and 

attempted to relate them to acoustically-sensed characteristics.  I used historical sediment 

sample data and sediment maps to produce hypothetical habitat maps, then compared 

these to characterizations made using acoustic and optical data.  Finally, I attempted to 

address the questions:  Are habitat classifications made using acoustic data biologically 

or ecologically meaningful; do these classifications successfully delineate regions of 

distinct species distributions or community structure?  If not, how can we modify habitat 

classification based on acoustic data to provide biologically meaningful classification, 

and what suite of tools and techniques should be applied to accomplish that?   
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My research focused on (1) automated and objective segmentation methods  of 

benthic habitat mapping from multibeam sonar bathymetry and backscatter data; (2) 

applying quantitative analysis of imagery to derive physical and biological seafloor 

characteristics; (3) using techniques to provide overlapping spatial scales of optical and 

acoustic data; and (4) making linkages between characteristics assessed from different 

data sources.   

 

1.2.  Background 

A common impetus for biological habitat mapping is to determine where and in 

what densities organisms exist in order to make stock assessments or evaluate biological 

resources.  Classically, benthic habitat mapping and resource assessment have involved 

collecting point samples for benthic infauna and substrates (sediment facies) or transect 

tow samples for fish and epifauna.  Optical imagery has often been used to describe 

substrates and assess occurrences of certain fauna.   

In many cases, occurrence or abundances of some species might be determinable 

based on the substrates because associations exist between organisms and physical 

habitat attributes.  Therefore, even if expensive biological determinations are not 

available, less expensive samples of physical environmental factors or organisms can be 

used to make inferences about the biological resources of interest and to support 

interpolations.  Recently, habitat mapping efforts have involved the use of seafloor maps 

generated from multibeam echosounders (MBES) or sidescan sonars (SSS).  The 

bathymetric and backscatter data from MBES can relate information about seafloor 

morphology and composition, with near complete coverage of the seafloor, and often at 
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high spatial resolution.   Kostylev et al. (2003) have shown that scallop abundances were 

correlated with multibeam backscatter strengths on Browns Bank in the Gulf of Maine.  

They suggest that, because of strong associations between scallops and gravel-lag 

deposits, and because gravel lag regions had distinct backscatter intensities from 

contiguous sandy regions, the prediction of scallop stock can be made from multibeam 

backscatter data.   

If strong associations exist between species and substrate and if backscatter 

strength indicates substrate composition, then a simple backscatter map could directly 

provide a basis for stock assessments.  Unfortunately, strong associations are rare, and 

there are many complications that limit how well we can determine substrate type from 

multibeam backscatter and therefore the accuracy of predictions about biological 

resources is often hindered.  What the acoustic data maps represent in terms of biological 

habitat depends upon what they represent in terms of physical habitat, and that in turn, 

depends upon many factors and complex interactions.  Also, seafloor maps derived from 

acoustic data do not provide the complete description of the physical environment (i.e., 

all the important factors to biological resources).  Even if the physical habitat attributes of 

the seafloor can be determined accurately from the acoustic data, anomalies are common.  

Known associations are generalizations, and there are many exceptions.  Strong 

associations between organisms and substrates do exist, but not as commonly as weak 

and complex associations.  However, the better the physical attributes can be described, 

the more likely that biological constituents might be predicted, and thus resource 

assessments improved.   
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1.2.1.  Recent seafloor habitat mapping 

Marine and estuarine benthic habitat mapping and classification has recently 

become a worldwide priority of ocean science.  Maps derived from multibeam 

echosounders appear to provide the best basis for initial delineation of the seafloor into 

geological and geomorphological regions (Mayer et al., 1999; Todd et al., 1999).  A 

physical habitat model developed from interpretation of those regions, with regards to 

substrate composition and water-column conditions, can be used to predict distributions 

of benthic species or communities using any organism–substrate interaction models, 

existing biological or fisheries data, or new sample data.  Maps from multibeam and 

sidescan sonar data have been used for geological (Todd et al., 1999; Dartnell and 

Gardner, 2004), ecological (Kostylev et al, 2001) and fisheries (Friedlander et al., 1999; 

Kostylev et al., 2003) mapping, as well as habitat classification (Greene et al., 1999).   

 MBES bathymetry and backscatter maps have been used to delineate the seafloor 

into physical habitat regions and then assigned biological habitat classes based on sample 

imagery and biology samples (Kostylev et al., 2001).  Thus, benthic habitat mapping has 

benefited from the areal coverage and high resolution capabilities of multibeam 

(Kostylev et al., 2001) and sidescan sonar systems.  However, because of the complex 

interactions between seafloor composition, geometry, and acoustic reflection and 

backscatter (see Urick, 1983), multibeam and sidescan maps must be carefully ground-

truthed to confirm sedimentological and biological predictions.   

Seafloor habitat maps, such as those produced by Kostylev et al. (2001), rely on 

subjective expert interpretation of maps generated from multibeam bathymetry and 

backscatter data.   Although manual interpretation is commonly used to delineate seafloor 
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habitats, the potential exists to use more objective automated or semi-automated 

segmentation of the seafloor using MBES or SSS data to interpret the seafloor in terms of 

benthic habitat.  The notion that habitat can be automatically classified from acoustic data 

only applies to certain simple definitions of habitat given the present state of knowledge 

of acoustic-seafloor interactions.  Even if a simple definition of habitat is used (e.g., 

sediment type), many assumptions are still required about how the acoustic data relate to 

seafloor properties.  Habitat types are interpretation-based products from acoustic data.  

Some of the properties required to describe habitat, such as substrate type, can be inferred 

from the acoustic data, but with considerable potential for error.  Ground-truth is still 

required to make the connection and essentially test the hypotheses about habitat type 

that we make from the automated or semi-automated classifications.  Thus, what is 

produced from acoustic data is essentially a “hypothetical habitat map.”  Though, it might 

be argued that any map of seafloor characteristics constructed using interpolation is a 

hypothetical map.   

Expert knowledge and interpretation are not only aspects of map interpretation in 

terms of habitat, but they are also components of habitat models (Brown et al., 2000; 

Banner and Hayes, 1996).  Thus, habitat maps incorporate subjectivity and may not 

represent all important details.  For instance, many habitat studies incorporate a restricted 

treatment of habitat attributes (salinity, temperature, depth, and substrate type), despite 

the fact that many other physical and biological interactions exist that complicate the 

relationships between organisms and habitat.   
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1.2.2.  Habitat suitability indices (HSI) 

 Habitat suitability indices (HSI) have been created to summarize 

associations and affinities between habitat attributes and certain benthic megafauna and 

fish species (Banner and Hayes, 1996; Brown et al., 2000).  If the degree of association 

between a species and habitat attributes can be determined, then the ability to predict 

biological resources and fisheries stocks from physical environmental data can be 

improved.  HSI is a function of a few parameters that are scaled and quantized in order to 

quantify the strength of the affinity between a species and specific ranges of selected 

habitat attributes.  In the scaled and quantized form, each parameter is considered a 

suitability index.  HSI maps provide a spatial summary of a model combining all the 

individual suitability indices.   

1.2.3.  Habitat Fundamentals and Terminology 

In much of the habitat-related literature, habitat usually connotes the spatial 

domain and physical setting providing resources and tolerable conditions supporting 

some aspect of an organism’s life.  This definition is generally consistent with Grinnell’s 

(1917) usage of “niche” that expresses what is now generally considered physical habitat 

as well as environmental constraints affecting distributions of organisms.  Hutchinson’s 

(1958) sense of niche encompasses the ranges of conditions within which species survive 

and reproduce (Whittaker et al., 1973).  A similarity exists between Hutchinson’s concept 

and the requirements of what is deemed “essential fish habitat” (EFH) as designated by 

the Mangusun-Stevens Fisheries Conservation and Management Act of 1996.  It can also 

be seen that maps of habitat suitability index (HSI) attempt to represent the fundamental 

niche of Hutchinson (1958) in terms of realistic, detectable, mappable environmental 
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parameters for which species life history attributes are known.  It is also common to 

include biological modifiers (names of dominant species, or descriptions of biogenic 

features) for describing habitat types, but these can cause confusion because to some 

researchers habitat represents a physical entity whereas the term biotope is should be 

used if the description involves biological attributes.   

Biotope may be distinguished from habitat in that biotope relates the presence and 

association of specific species or functional ecological group to a certain substrate type or 

condition.  One of the prominent recent marine habitat classification schemes, BioMar 

(Picton and Costello, 1998), uses biotopes as its ultimate class unit.  BioMar lists 

sublittoral sediments as a major habitat, and infralittoral muddy sands as a habitat 

complex; associated with that habitat (complex) are biotopes or biotope complexes.  This 

terminology suggests that biotopes are refinements of habitat classes that include 

biological descriptors that are sometimes specific but are sometimes generalized.  In the 

generalized case, the class unit is considered a biotope complex.  For example, “shallow 

muddy sand faunal communities” describes a biotope complex, and “Echinocardium 

cordatum (heart urchin) and Ensis spp. (razor clams) in lower shore or shallow sublittoral 

muddy fine sand” describes a biotope (Picton and Costello, 1998).  The hierarchical 

structure of that scheme is evident, and most recent classification schemes are similarly 

hierarchical (see Greene et al., 1999; Allee et al., 2000).   

Whether or not the physical habitat is distinguished from biotope may not be of 

consequence because even biotope could be considered a generalization of biologically 

modified physical conditions for species that are not detected.  The usage of habitat can 

encompass biotope (Bonsdorff et al., 1996; Kostylev et al., 2001) and may be understood 
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both ways.  Standardization is being sought for habitat classification, so the terminology 

might converge.  What are important are the physical and biological habitat attributes.  

The differences of opinion concerning relevant attributes and spatial scales are likely the 

source of the differences in terminology and approaches to classification.   

1.2.4.  Seafloor Habitat Attributes 

 As explained previously, habitats can be interpreted as spatial subsets of the 

physical environment as they pertain to an organism or group of organisms.  To clarify 

the simplistic and overly general definitions of habitat, I reviewed published articles to 

see how researchers used seafloor habitat attributes in order to illustrate the concept of 

habitat.  For example, habitat attribute descriptors in the literature include:  salinity, 

temperature, depth, substrate, wave exposure, eelgrass, specific sediment classes (e.g., 

gravel, gravel over sand, muddy sand), hardbottom, sandy bottom, salt marsh, marsh 

edge, inner marsh, oyster reef, dissolved oxygen, cover and habitat complexity, and area.  

For synthesis, commonly used habitat attributes were summarized into a list of common 

attribute types (Table 1.1).  Habitat classification schemes were not used to construct the 

attribute list.  Note that not all of the attributes pertain to seafloor characteristics; rather 

some pertain to water-column conditions.   

Levels of detail and generality of attributes often differ according to the focus of 

the habitat mapping effort and the spatial coverage.  For example, compare the attributes 

used in some of the benthic ecological studies focused on macroinfauna (Bonsdorff et al., 

1996) to those of habitat suitability index (HSI) and essential fish habitat (EFH) studies 

(Brown et al., 2000; Able, 1999).  It is not that attribute details are not generally 

important, but typically that most attributes cannot be sensed in detail for the spatial 
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scales considered (sometimes because of the sampling devices used), or that knowledge 

does not exist concerning how those attribute details relate to a particular species. Detail 

is generally sacrificed for coverage and vice versa.  In the case of habitat mapping, 

species size, motility and range determine the coverage necessary for complete mapping.  

For defining, modeling, or mapping habitats, expert knowledge and interpretation can be 

considered components of a habitat model (e.g., Brown et al., 2000). 

 

Table 1.1.  Summary list of common attributes used in published articles to 
describe seafloor habitat.  Habitat classification schemes were not used to 
construct this list.   
Habitat Attribute 
Salinity   
Temperature   
Substrate (type, class, grain size)   
Depth  
Dissolved Oxygen   
Nutrients  
Hydrodynamic energy regime   
Complexity  
Associated fauna  
Disturbance regime  
 
Other factors to consider: 
   Global and regional setting (typically an unstated attribute)  
   Time   
   Sediment and particle load and transport 

 

 

1.2.5.  Seafloor Texture, Roughness, and Spatial Attributes 

 In addition to seafloor composition, the spatial distribution of seafloor 

features (landscape characteristics and patchiness) also influences benthic biology (Zajac 

et al., 2000; Guichard and Bourget, 1998) and can be considered as habitat complexity, a 

common habitat attribute (Table 1.1).  In addition, the spatial scales of seafloor features 
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and environmental influences are important.  Benthic species distributions, abundances 

and diversity are products of large and local spatial-scale processes (Menge and Olsen, 

1990).  Many benthic studies have detailed data concerning the local processes, but often 

lack detailed large spatial-scale process information, meaning that interpretations can 

lack regional context of the seafloor properties and processes.  Zajac et al. (2000) showed 

that benthic community differences could be explained by regional differences in 

sediment grain-size class when considered at the spatial scale of Long Island Sound.  

When considered at sub-Sound scale, community differences could be attributed to local 

variations in seafloor properties.  Spatial distribution and spatial scales of variability are 

important habitat characteristics, and both large and small spatial-scales are relevant.  In 

addition, if differences in properties can be described, they likely correspond to variations 

in the benthic community.  The scales of sampling and analysis are important.  Hewitt et 

al. (1998) suggest that determining an appropriate sampling scale is not as important as 

sampling and modeling at multiple spatial scales.  Larger spatial extent of samples allows 

larger spatial scale processes to be described, but only a certain amount of biological 

sampling is realizable because resources for sampling (funding, equipment, or time) are 

typically limited and, therefore , a compromise is made between sampling density and 

extent (Hewitt et al., 1998).  The situation is analogous to the choice, mentioned 

previously, between detail and coverage.   

Acoustic maps can help solve the sample-allocation problem.  Shallow-water 

MBES bathymetry and backscatter data allow detection of seafloor properties at spatial 

scales ranging from decimeters to kilometers.  MBES data can be used to describe spatial 

distributions and variability of apparent seafloor properties (such as facies or grain-size 
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class) over those scales.  Maps of apparent facies distributions can facilitate sampling,  

analysis and interpretation of biological data at multiple spatial scales, making it possible 

to address some of the issues described by Menge and Olsen (1990), Zajac et al. (2000), 

and Hewitt et al. (1998).  Detailed maps of the distribution and variation of seafloor 

morphology and composition, might provide the interpretive link between data collected 

for detailed benthic ecological work and habitat mapping efforts.   

Because morphology can be used to interpret processes, morphological regions 

can be indicative of coherent physical environmental conditions; either consistent 

conditions or characteristic variation of conditions.  For example, bedforms are generally 

indicative of steady unidirectional or oscillatory flow with velocity profiles inducing 

shear stresses within a certain range capable of mobilizing the sediment (by overcoming 

density, gravity, and friction).  Bedform size and geometry for non-cohesive sediments 

depend primarily upon sediment grain-size distribution and flow or shear velocity.  

Ideally, bedforms composed of a narrow sediment grain size distribution can relate at 

least the relative strength of currents or size and period of waves (e.g., Allen, 1980).  

Even in a non-ideal case, there are two likely explanations for bedforms seen in MBES 

data:  that the flow induced them or that they are relict features from a past process.  One 

or the other explanation might be more reasonable based on the particular system.  It may 

be possible to make inferences about the hydrodynamic regime given only detailed 

bathymetry and backscatter maps.   

Even though it might not be possible to make inferences about specific conditions 

or hydrodynamic behavior, regions of similar seafloor morphology and composition 

suggest that similar processes have occurred in those regions.  Therefore, if we can 
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identify and delineate seafloor regions with similar patterns of morphology and 

composition, then we have determined the spatial extents where the primary factors 

influencing benthic organisms are believed to be consistent or vary consistently.  Seafloor 

morphological patterns can be identified manually by the investigator or automatically by 

using spectral, spatial, or textural analysis of seafloor backscatter or bathymetry.   

Seafloor roughness can be quantified using spectral analyses (Fox and Hayes, 

1985; Pace and Gao, 1988; Briggs, 1989; Fox, 1996).  Spectral analysis has been applied 

to large spatial scale seafloor features (kilometer to tens of kilometers profiles from ocean 

ridges) (Fox and Hayes, 1985), and to microtopographic seafloor profiles representing 

millimeters to decimeters (Briggs, 1989; Lyons et al., 2002; Pouliquen and Lyons, 2002), 

and to sub-millimeter-resolution profiles from sediment profile images (Cutter, 

Submitted).  Spectral analysis involves transforming data from a spatial (or temporal) to a 

frequency domain, and allows description of a range of spatial frequency components 

comprising seafloor elevation profiles.  The power spectrum represents the variance 

contained in the frequency components comprising a function or signal.  The amplitude 

spectrum is  the square root of the power spectrum, or log of amplitude is half the log of 

power.  Fox and Hayes (1985) and Fox (1996) used the amplitude spectrum, but the 

power spectrum has been applied more often.  If periodic features such as bedforms exist 

on the seafloor, then the spectrum from a topographic profile taken perpendicular to 

crests will have a peak in the frequency band that represents the spatial frequency of the 

bedform periodicity (the wavelength).  The Fox and Hayes (1985) model describes the 

spectral content of the seafloor elevation data in terms of a few parameters that can be 

used to discriminate seafloor regions based on roughness characteristics.  
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 Two-dimensional spectra can be summarized by four parameters of the Fox 

(1996) model that represent 1) overall roughness, 2) strength of lineations or anisotropic 

roughness, 3) orientation of anisotropic components or lineation angle, and 4) amplitude 

variation with scale as represented by the slope of the spectrum.  High values of the 

fourth parameter, b, suggest that roughness is dominated by large-spatial-scale roughness 

(low spatial-frequency) features, and low values of b suggest that roughness is dominated 

by small-spatial-scale roughness (high spatial-frequency) features.  The parameter b is 

related to the fractal dimension in certain cases (Fox and Hayes, 1985).  If the seafloor is 

isotropic, only two parameters are necessary to model the one or two-dimensional 

spectrum (Lyons et al., 2002).  An alternative model for anisotropic seafloor roughness is 

provided by Lyons et al. (2002) where the power from periodic components is modeled 

using a Gaussian function centered on the wavenumber vector representing the average 

ripple wavelength and orientation.   

Roughness is important to acoustic backscatter and spectral parameters are 

required to implement some of the widely used models that relate acoustic backscatter to 

seafloor properties (Jackson et al., 1986; APL-UW, 1994).  However, it is difficult to 

reconcile and compare parameters from amplitude spectra as used by Fox and Hayes 

(1985) to parameters from studies using power spectra, such as Stanic et al. (1988), 

Briggs (1989), Lyons et al. (2002), Jackson et al. (1996), or Sternlicht and DeMoustier 

(2003).   

1.2.6.  Texture and Spatial-integration Scales 

Typically, texture analysis has been applied to acoustic backscatter data.  For 

instance, Huvenne et al. (2002) and Ojeda et al. (2004) used gray level correlation 
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matrices to segment backscatter data according to texture.  High-resolution bathymetric 

data also have proven useful for texture analysis.  Cutter et al. (2003) used a texture 

feature called local Fourier histogram (LFH) developed by Zhou et al. (2001) to segment 

bathymetry derived from shallow water MBES data.   

Texture analysis generally involves texture features that describe a property, 

statistical distribution, or behavior occurring at a local spatial scale, but also depends 

upon the repetition of that property regionally.  Many texture features require a certain, 

specified group of data points representing a spatial-integration scale.  Often in the image 

analysis research field, block sizes (regions of pixels where the analysis is applied) are 

specified arbitrarily, with no real support for the choice of sizes.  For example, 

researchers calculate their texture feature vector within N by N pixel blocks, where N can 

be 16, 32, 64, etc.  The size of the block and N are sometimes chosen because test data 

(images) are composed of standard texture palettes (Brodatz textures) available as 512-

by-512 pixel images and are easily divisible into squares with sides of lengths equal to 

powers of two.   

An important issue is that the spatial-integration scale can control the form of the 

texture feature vector.  A texture feature vector is basically a set of numerical values, 

each of which represents some statistical attribute or distribution of values from the 

texture feature analysis.  If an integration scale is too small, then the texture feature might 

not be able to represent the texture pattern.  If an integration scale is too large, then the 

texture feature might represent multiple textures.  How to optimize spatial-integration 

scale, or at least how to avoid arbitrary decisions is undetermined.   
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1.2.7.  Spatial Variation Characterization 

Spatial variation of seafloor properties can be described, quantitatively modeled 

and perhaps classified using spatial analytical tools such as variograms (Herzfeld, 1993).  

The variogram is the variance of increments for a random variable  
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where s is the spatial location vector (x,y) in two dimensions, h is the lag distance 

and orientation vector, n(h) is the number of pairs of observations at lag distance h, and Z 

is a random variable or real-valued stochastic process (Cressie, 1989; Stein, 1999).  

Technically, the variogram is two times the semivariogram   g (h), but the term 

variogram and semivariogram are commonly used interchangeably.  Variograms 

represent spatial covariation in terms of  the change of variance with the distance between 

samples.  In the case where a process is second-order stationary such that the mean is 

constant and the covariance varies only with distance and not position (Cressie, 1989), 

then the semivariogram is related to the autocorrelation r (h) as 
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where C(0) is the variance.  The variogram describes variance according to separation 

distance, and at some separation distance the variogram value reaches the overall 

variance.  That distance is considered the range or effective range of the variogram and 
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the value where the variogram approaches the overall variance is known as the sill.  The 

shape of the variogram and the rate of increase describe how smoothly or abruptly and 

the rate that the overall variance is approached.  Herzfeld (1993) used those properties to 

demonstrate that variogram properties could be used to distinguish and classify sediment 

ponds, abyssal hills, and some complex terrains.  Models are often fit to empirical 

variograms, allowing spatial modeling and interpolation such as kriging, but model 

parameters can be useful for classification of MBES data as shown by Herzfeld (1993).    

 

1.2.8.  Ground truth imagery 

 Remotely deployed still-camera imagery can be used to ground truth 

MBES or SSS maps, and the area represented by the image sample generally is very 

small relative to the scale of features present in the acoustic data set.  Acquiring 

video/photos at greater heights above the seafloor because greater camera-target distance 

produces a larger imaged area.  Underwater optical imagery, however, is limited by 

water-column conditions, owing primarily to attenuation of light by suspended particles.  

Light-attenuation is most pronounced in coastal waters, but applicable throughout the 

oceans.  Even when particle concentrations are low, light attenuation through clear 

seawater limits the distance, and therefore the area, that can be reliably imaged.  In the 

deep sea where benthic boundary layer turbidity can be low, the limitation is the intensity 

of artificial light sources and camera receptors. 

Video imagery can be used to provide continuous image data along large 

distances, although quantitative analysis can be difficult or tedious.  Mosaics can be 

constructed from video image sequences to convert the many individual video frames to a 
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single still image representing the entire imaged tract.  Mosaic images can be generated 

from underwater video footage of the seafloor collected by a diver or by towed camera 

using a featureless coregistration technique involving frequency-domain processing of 

images to automatically solve for affine motion parameters, translation, rotation and 

zoom (Rzhanov et al., 2000).  Each frame gets coregistered to the previous frame and its 

magnification is adjusted to the previous zoom level.  Using this approach the mosaic has 

a uniform distance scale throughout (unless errors accumulate).   

Mosaics representing tens of meters or more of seafloor have been constructed 

and allow detection, identification, and measurement of large epifauna, large 

bioturbational features, substrate transitions, and seafloor attributes important to acoustics 

at spatial scales inherent to standard MBES and SSS deployments.  Mosaic construction 

does not necessarily require positioning data, although positioning data are necessary for 

placement of the mosaics within geospatial maps and for interpretation with respect to 

sonar data maps.   

1.2.9.  Background Summary 

It is clear that acoustic data from multibeam echosounders and sidescan sonars are 

indicative of physical habitat attributes, and only rarely will directly provide biological 

attributes.  Some exceptions to that are when large organisms with distinctive acoustic 

response are present (e.g., kelp forests, dense seagrass beds, schools of fish).  Generally, 

however, MBES and SSS are used to acquire seafloor elevation and backscatter intensity 

data.  Acoustic backscatter intensity can be related to substrate composition, and seafloor 

elevation patterns relate to morphology that can indicate formation processes.  However, 

many interactions complicate those relationships.  It is my intent to explore some of those 
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complications and consider how we can interpret seafloor acoustic data in terms of 

biological habitat.   

 

1.3.  Overview of Data and Methods 

 The primary data set used for this research are MBES bathymetry and 

backscatter data from the Portsmouth Harbor Common Dataset (Mayer and Baldwin, 

2001), collected in the mouth of the Piscataqua River Estuary mouth to construct seafloor 

maps that relate morphology to composition.  Specifically, bathymetry data were 

collected with Reson Seabat 8125 and Reson Seabat 8101 multibeam echosounder 

systems.  Backscatter data originated from a Kongsberg-Simrad EM3000D multibeam 

echosounder, and a Klein 5500 sidescan sonar.   

Delineation and classification of these data sets were done separately and results 

were compared to an existing substrate map and data (Ward, 1995).  Existing substrate 

data (Ward, 1995) were used to provide initial hypothetical “physical habitat models” 

(PHM) and “hypothetical habitat maps” (HHM).  The PHMs and existing water-column 

data (temperature, salinity) were used to generate habitat suitability index (HSI) maps for 

selected species.  A hypothetical biological habitat map was generated to predict how the 

dominant infaunal communities were distributed.   

Ground-truth data include remote and diver-deployed video and still cameras and 

direct substrate and infaunal samples, to test the validity of the hypothetical PHM, HSI 

and the predicted faunal maps.  Specific attention was made to regions where the seafloor 

morphology and backscatter maps differed because those regions might indicate 

transitions in composition and processes.  Remote and diver-deployed imagery were used 
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to assess habitat-specific faunal occurrences and densities, for selected detectable species 

and biogenic features.   

1.3.1.  Data Sources 

 The work described in this thesis includes the following data:  bathymetry, 

backscatter, optical imagery, and substrate and biological samples.  The primary sources 

of data are listed below.   

1.3.2.  Bathymetry data 

Bathymetry data consists of portions of two of the multibeam echosounder 

surveys from the Portsmouth Harbor Common Dataset (Mayer and Baldwin, 2001):  the 

Reson 8101 dataset and the Reson 8125 dataset.   

The Reson SeaBat 8125 multibeam echosounder data were collected by Science 

Applications International Corporation (SAIC) aboard the UNH vessel R/V Coastal 

Surveyor, in July, 2001.  The 8125 operates at a frequency of 455 kHz, has a 120 degree 

swath width, and uses focused beamforming to achieve 240 beams with across-track 

beamwidths of 0.5 degrees and along-track beamwidth of 1 degree (Reson, unpub. 1).  

Depth resolution is stated to be 6 mm; swath coverage for the 8125 ranges from 3.5 to 1.7 

times water depth in depths of 15 to 90 m (Reson, 2002).  Position, heading, and attitude 

information for the 8125 survey was measured using an Applanix POS MV 320 

(Positioning and Orientation System for Marine Vessels) inertial motion unit.  Data were 

“cleaned” (selection and removal of data artifacts and false-bottom soundings) according 

to hydrographic processing standards and the data were gridded at various scales using 

CARIS HIPS (Hydrographic Information Processing System software, Universal 

Systems, Fredericton, New Brunswick, Canada).   
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The Reson 8101 data were collected by the National Oceanic and Atmospheric 

Administration (NOAA) from launches deployed from the NOAA ship Whiting, in 

November, 2000.  The Reson 8101 operates at 240 kHz, has a 150 degree swath width 

and forms 101 beams with beamwidths of 1.5 degrees, and has a range resolution of 1.25 

cm (Reson, unpub.2).  Position, heading, and attitude for the Reson 8101 survey were 

measured using an Applanix POS MV 320.  Data from a doppler speed log and a surface 

sound-velocimeter were logged to determine sound propagation speed.  CTD (Seacat) 

casts were taken from a separate boat at four sites, with a cast at each site every two 

hours.  Reson 8101 data were “cleaned” according to hydrographic processing standards 

and the data were gridded using CARIS HIPS software.   

1.3.3.  Acoustic backscatter data 

Backscatter data from a Simrad EM3000 multibeam echosounder and a Klein 

5500 sidescan sonar were also used.  The Simrad EM3000 data were collected by Simrad 

aboard the UNH vessel R/V Coastal Surveyor, in June, 2000.  The Simrad EM3000 

operates at a frequency of 300 KHz and forms 127 beams with dimensions of 1.5  by 1.5 

degrees.  Spacing between beams is 0.9 degrees, generating overlapping beams.   

The Klein 5500 “multibeam sidescan” sonar survey was conducted by NOAA 

from launches deployed from the NOAA ship Whiting.  The Klein 5500 towfish was 

mounted directly to the hull of a survey launch-vessel.  The Klein 5500 operates at a 

frequency of 455 kHz, and uses 5 steered and focused beams per side (Klein Associates, 

Inc., 2003).   
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1.3.4.  Seafloor video imagery data 

 Underwater video cameras were deployed by divers and remotely from 

vessels to collect optical seafloor imagery.  Two underwater video cameras were used.  

One video camera was a Sony TRV-310 digital handycam with an underwater housing.  

Illumination sources for the TRV-310 included ambient lighting, an LED array, and a 

100-W halogen lamp.  The TRV-310 was deployed by divers as well as attached to a 

frame and deployed from the vessel to act as a drift camera.  The ability to determine the 

position of diver-deployed video was limited to time synchronization with a vessel 

positioning system clock and required that the diver be in a known position relative to the 

vessel.  That method was not very reliable and resulted in high uncertainty of diver-

deployed camera position.  Using the video camera attached to a frame and lowered by 

line or cable from the vessel during slow drift provides for higher positioning accuracy.   

The camera in the vessel-drift mode is deployed vertically below the vessel and the 

offsets to the GPS antenna(s) were measured.  The primary positional uncertainty relates 

to the scope of the line to the camera.   

The second video camera was a Deep Sea Power and Light (DSPL) model 2050 

video camera.  This camera was used as part of a large, frame-based system (Hubbard 

Camera) with remote power supply and with the capability to transmit the video to the 

vessel.  The lighting for the Hubbard Camera system consists of two video-synchronized 

strobe lights that are capable of reducing motion effects.  The limitations of the Hubbard 

Camera system are the requirement of a relatively large vessel and the need for 

operational personnel.  The benefits include better positioning than for a diver-deployed 

camera as well as the potential to eliminate motion artifacts from the imagery.  
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Positioning for the Hubbard camera has a level of uncertainty similar to the drift camera 

deployment, but the Hubbard camera can be deployed at higher speeds, thereby covering 

more seafloor.   

The DSPL camera also can be deployed on a small towfish (Sea Sciences) that 

was modified with runners for use as a sled in case bottom-contact occurred.  However, 

the lighting for the camera on the towfish is a limiting factor because of the height at 

which the towfish passed above the bottom.  The DSPL video quality is mediocre and the 

CCD sensor tended to be oversensitive to blue wavelengths until factory adjustment.  The 

positioning of the towfish was also problematic and generally even less reliable than 

diver positioning.   

1.3.5.  Substrate and biology sample data 

 Sediments were collected using either a box corer or a Shipek grab 

sampler.  The box corer has a 25-by-25 cm (0.0625 m2) box.  The Shipek grab sampler 

has a scoop 10.2 cm deep, 19.8 cm wide, and 19.8 cm long, and a capacity of 3 L.  

Several diver cores (10 cm diameter Plexiglas tube) were collected to sample specific 

substrates or fauna.   

Information on faunal occurrence, density, and identification were obtained using 

the video imagery data.   

1.3.6.  A note on positioning data 

Uncertainty of positions for ground-truth samples or imagery affect the 

georeferencing of the data.  Ground-truth samples or imagery collected by devices not 

rigidly mounted to the vessel and not fixed in relation to the position of the GPS antenna 

are subject to positional uncertainty.  If ground-truth data cannot be properly 
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georeferenced, then their worth may be diminished.  Georeferencing errors are 

particularly acute when ground truthing shallow-water multibeam data because of the 

high spatial resolution achievable.  Shallow-water multibeam systems can resolve 

decimeter-scale features; features that may be relevant to individual organisms.  

Uncertainty in positioning of the ground-truth data can lead to inaccurate assessment of 

the seafloor in terms of biological habitat or geological attributes.  Image mosaicing 

techniques may help overcome positioning errors of cameras by determining the actual 

motion of the camera along a track.  However, unless objects with known positions are 

imaged, there will still be uncertainty associated with the absolute position of the track.   
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2.1.  Citation 

Published in Journal of Experimental Marine Biology and Ecology, volumes 285/286, 

pages 355-370. 

Citation: 

Cutter, G. R., Rzhanov, Y., Mayer, L. A., 2003. Automated segmentation of seafloor 
bathymetry from multibeam echosounder data using local Fourier histogram texture 
features. Journal of Experimental Marine Biology and Ecology, 285/286, 355-370. 

 
 

2.2.  Abstract 

Patterns of seafloor topography represent regions of geomorphological feature 

types and the physiography governing the spatial distributions of benthic habitats. 

Topographic variability can be considered seafloor texture and can be remotely sensed by 

acoustic and optical devices.  Benthic habitat delineations often involve distinctions 

based on seafloor morphology and composition derived from acoustic data maps that are 

ground-truthed by optical imaging tools.  Habitat delineations can be done manually, 

although automation of the procedure could provide more objectivity and reproducible 

map products.  Recently, a technique using Fourier transforms to produce texture features 

called local Fourier histograms (LFH) has been used successfully to classify standard 
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textures in grayscale images and automatically retrieve digital images from archives 

according to texture content (Zhou et al., 2001). A modified form of that approach 

implemented by varying the spatial scales at which local Fourier histograms were 

calculated.  A modified LFH texture feature classification technique was applied to 

multibeam echosounder (MBES) data from Piscataqua River, New Hampshire, USA, for 

automatic delineation of a seafloor topographic map into regions of distinct 

geomorphology and apparent benthic habitats.  Automated segmentations were done by 

the LFH method on one-meter gridded MBES data, applying the local Fourier transform, 

used to generate the LFH, at spatial scales from one to five meters.  Seven seafloor 

texture classes were identified, corresponding to the primary substrate types and 

configurations in the study area as well as some previously unidentified regions and 

transitional zones.  The texture regions serve as a physical habitat model for the seafloor, 

a basis for predicting benthic faunal inhabitants, their areal distributions, and serving as 

sampling strata for ground truthing efforts. 

 

2.3.  Introduction 

Topographic variability of the seafloor influences benthic community structure 

and ecological processes at many spatial scales (Bourget et al., 1994; Cusson and 

Bourget, 1997; Guichard and Bourget, 1998; Menge and Olson, 1990; Zajac, 2001).  

Traditionally, topographic variability has been described based on maps constructed from 

acoustic (echosounder or sidescan sonar) data, whereas biogenic features have been 

described using optical data from still or motion imaging devices.  The overriding result 

is a mismatch of spatial scales between data, measurements, and interpretation of seafloor 
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properties.  Recent developments in multibeam echosounding (MBES) however, have 

resulted in detailed acoustic surveys that provide an unprecedented view of the seafloor at 

a broad range of spatial scales.  Using MBES data, digital elevation models (DEM) or 

digital terrain maps (DTM), which are two-dimensional rasterized data representing 

elevation of the seafloor or depth, are produced that depict nearly continuous-coverage 

depth measurements of the seafloor and reveal distinguishable texture patterns that 

represent topographic variation patterns, or geomorphological regions.  In shallow water 

(tens of meters deep) features with vertical dimensions of centimeters and horizontal 

dimensions of decimeters to meters can generally be distinguished, such that habitat and 

microhabitat characteristics are easily discriminated.   

Benthic habitat delineation has recently become a worldwide priority for ocean 

science, and MBES seafloor maps appear to provide the best basis for initial delineation 

of the seafloor into geological and geomorphological regions (Mayer et al., 1999; Todd et 

al., 1999; Kostylev et al., 2001) .  In turn, a physical habitat model developed by 

interpretation of those regions can be used to model distributions of benthic biological 

resources using any available biological or fisheries data, organism-substrate interaction 

models, or direct sampling.   Recent studies have utilized MBES and acoustic backscatter 

data to provide geological (Todd et al., 1999) and biological habitat (Kostylev et al., 

2001) maps, but their delineations were done manually.  Manual segmentation (by visual 

appearance) and delineation are inherently subjective and therefore can be inaccurate.  

Simple approaches to automated segmentation based on first-order statistics of 

topographic data may be sufficient in some cases, but often fail to distinguish areas with 

different biogeological processes, morphology or composition.  Thus, there exists a need 
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for a robust, automated delineation approach that is accurate, unbiased, and fast, 

especially for datasets that can contain billions of measurements.   

 One possible approach to automating the delineation of seafloor regions involves 

texture analysis of MBES-derived DTM’s representing seafloor topography data.  Some 

common texture analysis techniques include grayscale co-occurrence matrices and Gabor 

functions (Ware, 2000; Zhou et al., 2001).  In particular, Gabor filters are based on 

models of human vision perception of texture; thus Gabor functions can be used to detect 

and segment grayscale image textures in a manner similar to that of the human visual 

system (Ware, 2000).  However, human perception is biased, and digital terrain models 

of the seafloor can incorporate differences due to data projections or non-standard 

exaggerations incorporated for visual effect, thus reinforcing the need for a more 

objective methodology, less dependent on human perception.  

 One approach that was recently developed for texture feature construction uses 

local Fourier transforms (FT) to accurately describe the local spatial distribution of values 

(Zhou et al., 2001).  It has been shown that this technique provides a reliable means of 

classification of grayscale texture images (Brodatz textures) as well as automatic retrieval 

of images from digital archives according to texture content.  The texture features 

produced by the local FT technique, called local Fourier histograms (LFH), performed as 

well or better than grayscale co-occurrence matrix features for automatic classification of 

13 Brodatz textures.  In addition, Zhou et al. (2001) demonstrated that LFH texture 

features performed similarly to Gabor features for automated retrieval of Brodatz texture 

images, such that the average overall recognition ratio for 108 Brodatz textures was 

70.56% for LFH and 69.63% for Gabor features.   A technique incorporating texture 
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features similar to LFH, but denoted local spectral histograms (LSH), was recently 

developed by Liu et al. (2001) that might be more flexible, but also more subjective, in 

that it involves user choice of a set of filtering operations prior to generating the texture 

features.   

 We have applied the LFH texture features for automated classification and 

segmentation of the seafloor.  A modified form of the LFH texture feature classification 

technique was implemented by varying the spatial scales used to calculate the local 

Fourier transforms.  The technique was applied to multibeam echosounder data for 

automatic segmentation of a seafloor elevation map into regions of distinct 

geomorphology and apparent benthic habitats.  The accuracy of segmentation results 

were verified using historical sediment sample data and sediment maps (Ward, 1995), as 

well as underwater video imagery and diver observations.   

 

2.4.  Study Area 

The study area is located in the mouth of the Piscataqua River, a well-mixed 

estuary (Swift et al., 1996) flowing between New Hampshire and Maine, USA (Figure 

2.1) and exchanging water with the Gulf of Maine.  The freshwater supply to the 

Piscataqua River originates in a watershed in southeast New Hampshire and Maine and 

includes six tributaries, three of which flow first into Great Bay, although each of the 

tributaries are dammed at some point.  The total watershed area is 2334 km2.  The 

channel in the river mouth is oriented north-south, then abruptly turns to near due west 

at Fort Point, NH.  The Piscataqua is a tidally dominated system, with tidal amplitudes 

(half of the tidal range) of 1.3 m near the study area (Swift and Brown, 1983).  Average 
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total discharges for all the tributaries combined is about 32 m3 s-1 (Short, 1992).   

Maximum average cross-section and time-averaged current speeds near the study area 

are 0.5 m s-1 (spring) and 0.4 m s-1 (neap) (Swift et al., 1996).  However in narrower 

parts of the river upstream, current speeds can reach 2.2 m s-1 (Swift and Brown, 1983) 

to 3.1 m s-1 (Short, 1992).   

Primary substrates in the Piscataqua River-mouth study area were previously 

mapped by sample data from sediment cores (Ward, 1995) and consist of intertidal and 

subtidal bedrock, gravelly channel sediments, and a sandy sediment region near the 

center of the channel.  The sandy central channel region was recently determined from 

the MBES data and by diver and video observations to be a rippled sand wave field, 

consisting of 5-m to 10-m wavelength, 0.5-m to 1-m height sand waves composed of fine 

to medium sand and fine shell hash.   

 

2.5.  Methods 

2.5.1.  Dataset 

The dataset used for developing an automated segmentation procedure was a one-

meter gridded surface representing the bathymetry in the mouth of the Piscataqua River, 

New Hampshire, USA (Figure 2.2).  The gridded bathymetry was constructed using data 

collected with a Reson 8125 multibeam echosounder aboard the R/V Coastal Surveyor 

(UNH) by Science Applications International Corporation (SAIC) as part of the Shallow 

Water Survey 2001 Common Dataset (see Mayer and Baldwin, 2001).  Positioning was 

accomplished using an Applanix POS MV 320 (Positioning and Orientation System for 

Marine Vessels).  Data were cleaned according to hydrographic standards and the grid 



 34 

was constructed using HIPS (Hydrographic Information Processing System, copyright 

CARIS, New Brunswick, Canada); data are presented on a Universal Transverse 

Mercator (UTM) projection, zone 19 north.  The dataset covered 839 by 2034 meters, 

with the center of the lower left corner grid cell originating at UTM Northing 4768915 m, 

Easting 360918 m (latitude 43.0602° North, longitude 70.707° West).   

2.5.2.  LFH texture features 

 I use a modified implementation of the local Fourier histogram (LFH) texture 

analysis and discrimination technique described by Zhou et al. (2001).  The processing 

procedure involved calculating a local FT for every data point (grid cell, pixel or node).  

The Fourier coefficients characterize the spatial frequencies present in the signal, i.e. the 

signal’s roughness.  Zhou et al. (2001) describe texture features by considering only the 

immediate vicinity of a node in two-dimensional rasterized data.  On a square grid, such 

as in grayscale images and DTMs, that vicinity consists of eight nearest neighbors, 

enumerated consecutively to form a one-dimensional signal.  Fourier coefficients of this 

signal reflect local isotropic roughness of the area around the node.   

Eight Fourier coefficients from the eight-element, one-dimensional signal may be 

interpreted as four magnitude and four phase values.  Only magnitudes are used for the 

LFH texture features.  The LFH texture features require spatial-integration over a group 

of nodes (grid cells).  For all nodes in a square block 10 by 10 meters (block sizes of 5 by 

5 m and 20 by 20 m were also tested), the Fourier coefficients are calculated, then 

accumulated into histograms.  A histogram, with eight bins each, is generated for each 

magnitude coefficient.  Thus, the block of nodes is described by a LFH texture feature 

vector with 32 elements formed by concatenating the individual histograms (LFH feature 
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vector elements 0, 1, ... 7 contain the histogram for the 0th-magnitude coefficients, 

elements 8 through 15 contain the histogram for the 1st-magnitude coefficient, etc.).  In 

addition, the average depth value from the block was removed from coefficient 0 value 

(also known as the direct current or DC value, and representing the mean value of the 

series) prior to constructing the histograms in order to eliminate artifacts related to mean 

depth effects.     

My implementation allows for varying radii at which the local FT was applied 

and the block-size used to accumulate the LFHs.  The modification to Zhou et al. (2001) 

was to calculate the Fourier coefficients at not only the nearest neighbor data, but also 

data from a larger neighborhood, combined in a manner (depth averaged for eight  � /4 

radian angular sectors within a specified radial distance about each node) that maintained 

the same format input signal to the FT (eight-element, one-dimensional signal).  LFH 

texture features from the expanded neighborhood describe texture at broader scales.  An 

alternative method for examining multiple spatial scale texture using LFH would be to 

use only the eight-nearest-neighbor data, but to apply the LFH to data gridded at various 

scales.    

2.5.3.  Class grouping 

Classes were constructed using fuzzy k-means cluster analysis (Minasny and 

McBratney, 2000).  Seven cluster group classes were chosen after examination of results 

from 4 to 10 classes showed either lack of separation of primary sedimentary regions of 

Ward (1995) when too few classes were chosen, or excessive patchiness when too many 

classes were chosen.  The number of classes chosen was meant to provide 

correspondence between substrate types for which prior knowledge existed (in the study 
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area, there were four) and additional configurations and transitional zones evident from 

visual inspection of the DTM.  Table 2.1 summarizes the classes and areal coverages and 

provides general descriptions of the bottom types.   In order to provide some assessment 

of what the texture classes represent in terms of composition, beyond the 

geomorphological properties apparent from visual interpretation of the acoustic data 

(sand waves and rock), the LFH map was compared to an existing substrate map and data 

from substrate point-samples (Ward, 1995). 

2.5.4.  Representative LFH texture features 

After cluster analysis classification, representative LFH texture features were 

constructed using all LFHs from each class.   Initial representative LFH texture features 

included data from all classes, even those determined to be misclassifications.  Final LFH 

representative texture features were constructed using only data from classes determined 

to represent distinct regions by comparisons with Ward (1995) samples and visual 

interpretation of the terrain model, so that LFHs from apparent misclassifications were 

not used in construction of the representative LFHs.  The representative LFH texture 

feature vector was meant to represent only the clear cases where textures clearly 

corresponded to particular substrate configurations.   

 

2.6.  Results 

The LFH texture feature segmentations of the seafloor corresponded well with the 

various geomorphological and sedimentary regions mapped by Ward (1995) in the study 

area, allowing sedimentary classes to be assigned to the regions.  LFH classification 
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results were robust, generating similar results across several spatial scales of application 

(Figure 2.3).  Seven cluster classes were chosen as best representing the variety of 

apparent geomorphological features in the study area.  Fewer classes led to clearly 

different morphologies being assigned membership to the same group and classified as 

the same, whereas more classes led to subdivisions and excessive patchiness.   

Application of LFH to grid-cell nearest neighbors (radius = 1 m) corresponded 

directly to the procedure described by Zhou et al. (2001).  The resultant map showed 

several regions with mixed texture classes.  Because more uniform regionalization was 

sought, the neighborhood scales were increased.  Results for radii of 1, 3, and 5-m are 

shown in Figure 2.3 a-c.  With increasing neighborhood scale (radius), more uniform 

regions were produced, at the expense of potentially missing small patches of unique 

texture class.  Using a radius of 1-m, i.e. just the eight nearest neighbors, many texture 

feature blocks were considered to be misclassifications because they were located in a 

homogeneous region of the DTM (particularly obvious in the sand wave field) (Figure 

2.3a).  Increase of the scale to a radius of 3 m resulted in more consistent regions.  The 

best balance between regional consistency and oversimplification was produced using a 

radius of 5-m for these data at this grid size.  The LFH map produced using a 5-m radius 

was filtered to generate more coherent regions by adopting the majority value from 30-

by-30-m blocks as the new cell value (Figure 2.3).  These regions also suggest sampling 

strata for ancillary data collection, and produced a simple map for comparison with the 

DTM and analysis within geographic information systems.   

Relating the LFH texture feature classes to sediments by comparison to point 

sediment sample data and sediment maps (Ward, 1995) showed that LFH class 4 



 38 

corresponded to the large sand field.  LFH class 5 corresponded to subtidal and intertidal 

bedrock.  Samples by Ward (1995) in the LFH class 5 regions revealed only sandy gravel 

and muddy gravelly sand; however, other samples attempted by Ward (1995) in rocky 

regions (including one in LFH class 5 region) listed no data because no sample was 

retrieved, as would result when the grab sampler landed on rock (Table 2.1).  Based on 

the Ward (1995) map, all the other classes would be lumped into the gravel class; 

however, examination of the individual sediment samples in the LFH study area show 

that the regions delineated according to LFH class 7 were not represented by any 

sediment samples, only interpolation.  LFH classes 1, 2, 3 and 6 were represented by 

eleven sediment samples that were primarily composed of sandy gravel and gravelly sand 

(Table 2.1).   

Total areal coverages of majority-filtered (providing the class mode) LFH classes 

ranged from 67,438 m2 (class 7) to 219,995 m2 (class 4) (Table 2.1).  Classes 2, 3, 4, and 

6 all had coverages on the order of 200,000 m2.  Classes 1, 5, and 7 had coverages on the 

order of 100,000 m2.  Representative LFHs, produced using the mean of all LFHs by 

class, showed distinct differences among classes according to distributions of the various 

FT coefficients (Figure 2.4).  The distributions of the four Fourier coefficients used to 

construct the local FT maps and the LFHs were apparent in the LFHs.  The seven 

different LFH classes varied most by distributions of coefficients 1, 2, and 3.  Variation 

of the distributions of coefficent 0 were not as pronounced as the other coefficients’ 

distributions (Figure 2.4).  LFH classes 5 and 7 had broad distributions of coefficient 0, 

the other classes all had narrow coefficient 0 distributions (Figure 2.4, LFH bins 1 

through 8).  LFH classes 1 and 2 had representative LFHs similar enough to suggest 
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consolidation of those classes, except that the distributions of coefficient 1 were slightly 

different (Figure 2.4, LFH bins 9 through 17).  Distinctions among the other 

representative LFHs reinforce the concept that textural differences existed among 

seafloor regions segmented by LFH. None of the four individual coefficient distributions 

alone showed enough difference across classes to have been used for separation.  

Regardless, when the individual histograms were combined as the LFH feature vector, 

class differences were distinct.  Consequently, the texture LFH features represent 

complex spatial variation of seafloor topography.   

 

2.7.  Discussion 

Geomorphological regions were discriminated with high efficiency using LFH 

texture feature classification.  Regions distinguished by LFH analysis were suggestive of 

substrate type and sediment distributions.  Furthermore, LFH maps showed patterns 

similar to the relative backscatter intensity map (Figure 2.5) and the substrate map 

delineated by Ward (1995).  The LFH texture feature classes from the Piscataqua River 

mouth were determined to represent most simply:  rock outcrops, a sand wave and ripple 

field, and gravelly channel regions (Table 2.1).  Those same regional types were 

delineated by Ward (1995) based on core and grab samples and some sidescan-sonar 

images.  In addition, LFH texture classes existed for transitional regions and other bottom 

textures suggestive of slightly different geomorphologies that were either lumped into 

broad substrate classes by Ward (1995) or previously unsampled.  Diver observations and 

underwater video showed these regions to consist of sandy sediments with large 

(typically > 0.5 cm) shell fragments (represented by class 1 and class 2, see Figure 2.3).  
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The apparent disparity between facies corresponding to LFH textures and sample data for 

some LFH classes was indicative of two issues:  1) grab samples in rock outcrop regions 

did not recover the rock itself, either recovering no sample or recovering sediment 

interspersed amidst the rocks, and 2) delineations and descriptions of bottom type have 

inherent scale-dependent biases that can affect correspondences among maps from 

different sources and methodologies.  In addition, substrate heterogeneity is likely to 

accompany any particular seafloor texture; therefore, concise assignment of seafloor 

composition is not recommended.   

Some textural differences appear to represent similar substrates with different 

roughness configurations that are probably related to sediment transport and spatial and 

temporal variations in hydrodynamic effects.  Roughness and material transport are 

important factors to benthic organisms, affecting benthic assemblage structure and 

function.  A reassessment of organism-sediment interaction (OSI) studies by Snelgrove 

and Butman (1994) emphasized the need to consider hydrodynamics and material 

transport in order to strengthen OSI models.  If seafloor texture patterns correspond to 

material transport and hydrodynamic processes, then regions delineated by seafloor 

texture represent spatial extents of the benthic physical environment within which a 

process occurs at a particular frequency and with a certain intensity.  Therefore, texture 

maps of the seafloor can provide insight about the benthic biological community by not 

only revealing physiographic constraints and regionalization of seafloor feature types, but 

also by delimiting areas within with particular hydrodynamic influences.  Seafloor 

topographic maps analyzed for texture or roughness distributions are subtidal analogues 

to the synoptic maps generated by airborne spectrographic techniques for intertidal and 
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shallow subtidal water.  Although biological attributes of the system and organism-

sediment interactions may make the interpretation of spectrographic data used to 

construct synoptic maps more difficult, those attributes may lead to insights about how to 

remotely sense related processes (Paterson and Black, 1999).  Similarly, physical and 

biological factors influencing seafloor texture at various spatial scales must be studied in 

order to accurately assess how and why differences in texture in acoustic maps of subtidal 

waters indicate differences in substrate characteristics and benthic habitats.  Those efforts 

will likely lead to refinement of the interpretation of acoustic-derived seafloor maps and 

better methods for seafloor exploration.   

The resolution of the Piscataqua River dataset allowed the discrimination of 

region types by LFH to much finer scales than previous sediment type delineations based 

primarily upon interpolation of sparse point data.  Although apparent associations exist 

between LFH classes and substrate types, LFH classes are not simply representative of 

substrate alone; they represent bottom texture which, in a dynamic estuarine environment 

such as the Piscataqua River, is generated by interactions among the existing substrate 

composition, newly delivered sediments, fluid dynamics, and biological modifications.   

Representative LFHs from correctly classified data, provide feature vectors that 

can then be applied to new bathymetry data.  Thus, representative LFHs can serve as 

training features representative of particular geomorphologies, and can be used to directly 

determine the bottom texture and type for new data.  LFH analysis can also be applied to 

acoustic backscatter data.   

The spatial scales of feature variations were important and did cause some 

apparent misclassifications, the most obvious were areas with the rock outcrops that were 
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classified as sand wave field.  The geometry of the rocks and sand waves was similar 

enough in those cases to inhibit discrimination by LFH analysis.  The term ‘apparent 

misclassifications’ was used because there may have been a physical or biological basis 

for the apparent misclassifications:  sediments may have accumulated in depressions 

between rocks or soft-bodied animals and plants may have covered the rocks, thereby 

affecting their morphologies.     

 

2.8.  Conclusions 

I have developed an automated, objective method for delineating physical benthic 

habitats that can be used to model biological habitats prior to sampling the biological 

community, using historical biological data and assumptions about organism-substrate 

associations.  LFH texture feature classification served as the mechanism for delineation, 

and was automated, except for the choices of number of classes and texture spatial-

integration scale.  The appropriate scales of application of LFH should be determinable 

by optimization procedures, allowing more automation and generalization of the 

procedures.  In addition, despite the good initial results of LFH texture feature 

segmentation of seafloor topography, alternative segmentation techniques and 

comparisons to quantitative measures of roughness should be implemented.  Areas with 

apparent misclassifications should be examined directly to determine their character.  

When applying the segmentation procedure to new data, an “unknown” or “new” class 

should be introduced to allow for textures that do not correspond to the existing LFH 

texture features.  This will allow exploration and classification of new areas without 

restricting descriptions to only known types.   
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The LFH segmentations serve to regionalize seafloor geomorphological regions 

by textural pattern; those regions are believed to have characteristic combinations of 

sediments and hydrodynamic conditions.  Therefore, LFH segmentations result in a 

predicted physical habitat model for the seafloor.  That, in turn can be used to predict the 

initial benthic biological habitat model, particularly distributions of primary benthic 

community constituents or functional group types, depending on the detail of prior 

knowledge of the biological assemblages in the study area.  One of the strengths of 

segmentations made using LFHs on MBES-derived bathymetry lies in their ability to 

provide a context for detailed in situ seafloor investigation data.  On the other hand, 

interpretations about the ecosystem made using MBES should incorporate such detailed 

data, otherwise the descriptions are still as coarse as the data resolution.  Thus, there are 

limits to interpretations made using only the MBES seafloor topography data that should 

be addressed by rigorous, accurately georeferenced, and innovative ground truthing 

methods.  In particular, I seek methods that can provide information about types and rates 

of changes occuring in the transitions between regions segmented using LFH, and 

determine the true local variability of seafloor textures that might represent habitat 

patchiness.  The majority-filtered map provided a simplified and easy to interpret 

regionalization of the seafloor in the study area, although the apparently noisy 

representations might be valid for certain attributes.  Determination of small-spatial-scale 

variability could not be done using the Ward (1995) sediment map or sparse samples; 

therefore, I suggested a simplified depiction of seafloor region types in order to avoid 

speculation without supportive data.  For new seafloor explorations, it is likely that even 
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less ground-truth data will be available; therefore, I believe that maintaining a simple 

initial model is a practical approach.   
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2.11.  Tables for Chapter 2 

Table 2.1.  Substrate types found in each LFH class region, and total areal coverages of 
each LFH class.  Substrate classes were based on sediment samples from Ward (1995), 
with type descriptions in terms of Folk’s (1954) mud, sand, and gravel.  Sediment classes 
include sandy gravel (sG), gravelly sand (gS), muddy sand (mS), sand (S), muddy 
gravelly sand (mgS); there was one station within class 5 (rocky) where no samples were 
recovered (NR); no samples were taken (NA) within LFH class 7.  Areal coverage 
(rounded to nearest m2) of each LFH texture feature class in the study area is reported, for 
raw LFH results (5-m radius, 10-by-10-m block), and majority filtered results (majority 
value in 30-by-30-m block around each grid cell).   
 

LFH 
Class General Description 

Sediment class of 
Ward (1995) 

samples located in 
each LFH class 

region 

Raw LFH 
Coverage 

(m2) 

Majority 
LFH 

coverage 
(m2) 

1 Smoother sedimented 
bottom-texture 1 

sG, sG, gS, gS 111725 92960 

2 Rougher sedimented 
bottom-texture 1 

gS, sG, mS 187060 182589 

3 Smoother sedimented 
bottom-texture 2 

gS, msG, sG, sG 172785 199122 

4 Sand Waves S 221360 219995 

5 Rock NR, sG, mgS 111017 126986 

6 Rougher sedimented 
bottom-texture 2 

gS, gS, sG 185340 216774 

7 Steep, smooth 
marginal slopes 

NA 61819 67438 
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2.12.  Figures for Chapter 2 

 

Figure 2.1.  The study area consisted of a section of subtidal waters in the Piscataqua 
River, between New Hampshire and Maine, USA. The asterisk in the small map marks 
the area enlarged.    
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Figure 2.2.  Bathymetric digital terrain model (DTM) from the mouth of the Piscataqua 
River, NH, gridded to 1 meter, UTM projection, zone 19N.  Constructed from Reson 
8125 multibeam echosounder data, collected by SAIC for NOAA & UNH JHC-CCOM, 
July 2000.  Shading provided by artificial illumination from the north-northwest at an 
elevation angle of 45 degrees.  
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Figure 2.3.  Segmentation of Piscataqua River mouth bathymetry by local Fourier 
Histogram (LFH) texture feature classification using coefficients 0 through 3 and varying 
spatial scales to generate texture features.  LFH Texture feature classes from a) 
neighborhood radius of 1 m, b) neighborhood radius of 3 m, c) neighborhood radius of 5 
m. d) neighborhood radius of 5 m where the original LFH class value for each cell was 
replaced by majority value (mode) from the surrounding 30-by-30-m block, and LFH 
map draped onto bathymetric terrain model surface.  Coordinates are in UTM Eastings 
and Northings, zone 19 north. 
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Figure 2.4.  Representative histograms for seven LFH texture feature (radius=1 m, 
block=10 by 10 m) classes from cluster groups.  Each successive eight bins represent the 
distribution of an individual local FT magnitude coefficient.  Thus, bins 1-8 represent 
localFT coefficient 0 - mean, bins 9-16 represent coefficient 1 magnitude, bins 17-24 
represent coefficient 2 magnitude, and bins 25-32 represent coefficient 3 magnitude.  
Clustering was done using fuzzy k-means method (Minasny and McBratney, 2000). 
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Figure 2.5.  Acoustic backscatter mosaic covering part of the study area.  The backscatter 
mosaic consists of data from a Klein 5500 sidescan-sonar and a Kongsberg-Simrad (K-S) 
EM3000 multibeam echosounder system, mosaiced separately, gridded to 1-m (Klein) 
and 5-m (K-S), then combined and gray levels adjusted so that both datasets represented 
the same dynamic range.  The mosaic from the K-S data is shown over the mosaic of the 
Klein data that extended farther north and south, but less east and west.   
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CHAPTER 3 

 

3.  GROUND TRUTHING USING IMAGE MOSAICS 
 

3.1.  Citation 

To be published in Proceedings Volume from:  Symposium on the Effects of Fishing 

Activities on Benthic Habitats: Linking Geology, Biology, Socioeconomics, and 

Management.  Tampa, FL, Nov. 12-14, 2002. 

Citation: 

Cutter Jr., G. R., Rzhanov, Y., Mayer, L. A. and Grizzle, R. E., In Press. Ground Truthing 
Benthic Habitat Characteristics Using Video Mosaic Images. In Barnes, P. W., 
Thomas, J. P., (Eds.) Benthic habitats and the effects of fishing. American Fisheries 
Society, Symposium 41, Bethesda, Maryland.  

 

3.2.   Abstract 

Subtidal benthic habitats from the Piscataqua River were delineated by an 

automated segmentation technique using bathymetry derived from multibeam 

echosounder data (Cutter et al., 2003).  The map produced by segmentation of seafloor 

textures represents a ‘hypothetical benthic habitat map’ that requires ground truthing.  In 

this study, video mosaics were used to ground truth the hypothetical habitat map and to 

describe biological features and organism occurrences and densities.  Video mosaics 

acquired along two transects in the Piscataqua River were used to detect substrate 

transitions apparent in the bathymetric map, and to quantitatively assess coverages of 
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distinct sediment conditions, density of megafaunal organisms (lobsters), and 

bioturbational features (crab feeding pits).   

 

3.3.  Introduction 

Benthic habitat mapping efforts have benefited from high-resolution and total-

coverage data from multibeam and sidescan-sonar systems (Kostylev et al., 2001).  

However, because of the complex interactions between seafloor composition, geometry 

and acoustic reflection and backscatter (see Urick, 1983), multibeam and sidescan maps 

must be ground truthed to confirm sedimentological and biological characteristics.  

Remotely deployed video can be used for ground truthing, but quantitative analysis can 

be difficult or tedious.  Mosaics constructed from video-image sequences convert the 

many individual video frames to a single still image that represents the entire imaged 

tract.   

To map benthic habitats of the Piscataqua River (New Hampshire and Maine) 

multibeam bathymetry data were analyzed by Cutter et al. (2003) using an automated 

segmentation and classification technique (Figure 3.1) involving classification using local 

Fourier histogram (LFH) texture features described by Zhou et al., (2001).  

Segmentations of seafloor morphologies from that analysis had good correspondence to 

the sediment facies in the study area (Ward, 1995) and to multibeam and sidescan-sonar 

acoustic-backscatter-intensity datasets.  I suggest that the automatically classified texture 

feature map presented in Cutter et al. (2003) represents a ‘hypothetical benthic habitat 

map’ of the seafloor.  The hypothetical habitat map presents the opportunity to test 

hypotheses about seafloor characteristics and associated benthic fauna, and, if properly 
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ground truthed, can be considered a true habitat map.  The ability to go from a 

‘hypothetical habitat map’ to a true map of the spatial extent and distribution of benthic 

habitats will be strengthened by the use of other data such as acoustic backscatter 

intensity, substrate composition, energy regime, and salinity.    Whether or not the 

hypothetical habitat map accurately represents the spatial extent and distribution of 

benthic habitats might be strengthened by inclusion of such ancillary data  The better 

these key environmental factors can be described, the more likely the ‘hypothetical 

habitat map’ will be an accurate representation of biological habitats.  However, even if 

other environmental data are lacking, a ‘hypothetical habitat map’ can be developed to 

predict spatial distributions of habitat and seafloor characteristics.   

A habitat map requires choice of target species or groups of species that associate 

and requires ground truthing data to determine how the species occur, are distributed, and 

utilize the seafloor.  The occurrence and distribution of some species can be assessed 

using remote-sensing techniques.  For sessile epibenthic megafauna, or those with 

limited-motility, video mosaics can be used to assess the presence and density of 

organisms as a function of seafloor region (i.e., by hypothetical benthic habitats derived 

from segmentation of gridded seafloor bathymetry (Cutter et al., 2003), thus providing 

descriptions of essential fish habitat (EFH) levels 1 and 2 (Able, 1999).  EFH level 1 

designates habitat-specific occurrence (presence or absence) of organisms; EFH level 2 

designates distribution and abundance of organisms (Able, 1999).  The purpose of this 

work is to demonstrate that an analysis of video mosaics can be used as a ground-truthing 

technique to: (1) determine where apparent transitions of substrates occur; (2) assess 

occurrence and density of megafauna (the northern lobster Homarus americanus) and; (3) 
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estimate coverages of substrates (bare sediments and microalgal layers) and crab feeding 

pits.     

 

3.4.  Data and Methods 

Bathymetry data in the study area were collected aboard the R/V Coastal 

Surveyor (UNH) by Science Applications International Corporation (SAIC) using a 

Reson 8125 (455 kHz) dynamically focused multibeam echosounder (Mayer and 

Baldwin, 2001).  Data were cleaned using standard hydrographic processing approaches 

and gridded using a weighted-mean grid with 1-m spatial resolution.  Delineations of 

seafloor configurations representing apparent benthic habitats were produced by an 

automated segmentation procedure using texture feature classification applied to the 

gridded bathymetry data (Cutter et al., 2003).  

 

3.5.  Video Mosaic Imagery 

Mosaic images were generated from underwater video footage of the seafloor 

collected by diver and by towed camera using a featureless coregistration technique 

involving frequency domain processing of images to solve automatically for affine 

motion parameters, translation, rotation and zoom (Rzhanov et al., 2000).  Each frame 

was coregistered to the previous frame and its magnification was adjusted to the previous 

zoom level.  The resulting mosaic has a uniform spatial scale throughout (unless errors 

accumulate).  After the assembly of mosaics, colors were manually adjusted to 

compensate for ambient lighting effects by independently adjusting the ranges of the red, 

green and blue channels.  Positioning data for the towed camera deployments were 
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provided by differential GPS, and an acoustic transponder positioning system was used 

for the diver deployments.  Mosaic construction does not require positioning data, 

however positioning data are necessary for placement of the mosaics within bathymetry 

and backscatter maps and for the interpretation with respect to bathymetry and 

backscatter maps.   

Video image mosaics for this study came from two locations within the study area 

described by Cutter et al. (2003).  In the northwestern part of the study area, imagery for 

mosaicing was collected within an experimental enclosure for tracking lobster 

movements (lobster mesocosm).  Across the river, to the east of the main channel, 

imagery for mosaicing was acquired from a rocky region.   

 

3.6.  Results 

The video-image mosaic from the rocky region (Figure 3.2) reveals a transition 

from shelly gravel sediments to boulders and bedrock.  The transition observed in the 

mosaic is marked in the figure with colors that correspond to the nearest texture feature 

class regions from the segmented bathymetry map (Figure 3.1).  Several species of 

epifaunal sponges, bryozoans, and tunicates are evident on the rocks.   

Substrate transitions are visible and are delineations easily made from a mosaic of 

a rocky region on the eastern side of the river mouth channel (Figure 3.2).  Despite the 

fact that the mosaic was acquired from what appeared to be a rocky outcrop in the 

bathymetry image, various substrates are apparent from the mosaic.  Patches of gravel, 

shell hash, shell valves, and boulders exist in addition to bedrock.  It is evident that a 

variety of sediments with a wide range of grain sizes cover portions of the outcrops.  
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Texture feature classification determined that at least two seafloor textures exist at the 

scales of the analysis (1 m to 8 m).  The positioning data for the video used to construct 

the rocky region mosaic was not precise enough to determine if the transitions delineated 

in the mosaic correspond to bathymetric features.  The goal for future deployments is to 

collect positioning data that allow for accurate georeferencing of the video imagery and 

mosaics.    

The mosaic from the lobster mesocosm (Figure 3.3) reveals a silty fine sand 

substrate occupied by benthic megafaunal lobsters (Homarus americanus) and crabs 

(Cancer irroratus and/or C. borealis) and large infaunal razor clams (Ensis directus and 

possibly others).  The clams are evident from their siphons and empty shells and were 

identified by divers.  Large bioturbational pits are apparent, and some are occupied by 

crabs and lobsters.  Diver observations suggest that these pits are feeding pits excavated 

by crabs in pursuit of E. directus.   

The two primary goals of the analysis of lobster mesocosm mosaic (Figure 3.3) 

were to detect and enumerate occurrences of the lobsters (Homarus americanus), and to 

delineate substrate surface conditions apparent according to three classes:  (1) sediment 

with a micro-algal layer coverage; (2) bare sediment, although perhaps with shallow 

bioturbation, and; (3) deep biological-excavations.  The sediment surface conditions of 

the lobster mesocosm are relatively easily distinguished by color.  Sediment with algal 

cover is reddish-brown, bare sediment is olive to olive-gray, and deeply bioturbated 

sediment is bluish to bluish-gray due to digging and burrowing by crabs and lobsters that 

expose the anoxic subsurface sediments.   
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3.6.1.  Abundance of megafauna in lobster mesocosm video mosaic 

Visual analysis of the mosaic accomplishes the first goal of detecting and 

counting lobsters.  In the mosaic, seven lobsters were present with more than 50 % of the 

body in the image.  If only part of a lobster was seen in an image, then it was not counted.   

3.6.2.  Density of megafauna in lobster mesocosm video mosaic 

Because all images were adjusted to the same zoom level during automated co-

registration, and because the beginning of the transect contains a fence with 3.8-cm, the 

area coved by the mosaic could be estimated.  For the portion of the mosaic analyzed, the 

coverage area was 5.87-m2 and the lobster density was 1.2-m2.  This high lobster density 

reflected the higher frequency of occurrence of lobsters in that part of the enclosure.  

Other video sequences suggest a much reduced density in different parts of the 

mesocosm.   

A density estimate from an analysis of a video sequence requires knowledge of 

precise distances traveled between video frames as well as the camera height from target 

surface.  Such information could be provided by a surface positioning system but is 

unlikely to produce accurate estimates.  Accurate estimates of imaged bottom area 

require either co-registration of the image series to reproduce the entire tract, or detailed 

instantaneous data from precise motion and position sensors incorporated with the 

camera.  The latter option requires much more sophistication and expense than available 

to many studies, and was not used here.   
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3.6.3.  Sediment surface condition in lobster mesocosm video mosaic 

By eye, sediment surface condition was difficult to accurately delineate.  To aid 

visual determination of condition, an histogram from each color (RGB) channel of the 

image was range-adjusted, eliminating the highest and lowest 1 % of values.  Seldom was 

a particular area of the seafloor totally covered by one sediment condition.  Coverage 

areas were manually-delineated and subtle differences might have been indistinguishable 

and small patches could have been ignored; therefore, surely some errors in the estimates 

exist.  The coverage areas for the sediment conditions previously described were 

determined to be: 

1.  Algal or microbial covered     3.46 m2  

2.  Bare or with shallow bioturbation  2.27 m2 

3.  Deeply bio-excavated   0.14 m2 

 

3.7.  Discussion 

Mosaic image measurements can be made at specific intervals or for discrete 

areas to determine substrate conditions and estimates of organism density for any part of 

the seafloor imaged.   The mosaic from the lobster mesocosm shows large biogenic 

features such as siphons of the razor clam (E. directus).  These siphons were just large 

enough to resolve in the mosaic because of the height of the camera from the bottom.  For 

the assessment of infauna or small epifauna or their features (e.g., tubes and burrows), 

camera-deployment requirements must be configured to maximize image resolution.  

Images must be collected close to the bottom, and lighting must be of sufficient intensity 

and uniform.  One disadvantage with a deployment that maximizes resolution is reduced 
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coverage area.  Given a fixed field-of-view of the camera, the shorter the range to the 

target, the smaller the imaged area.  However, close-range imaging allows smaller 

features to be resolved and larger features to be seen with more clarity.  The scale and 

resolution of the imagery ultimately determine the level of detail at which habitat 

characteristics can be quantified.  In this case I was able to describe megafaunal 

occurrences and densities as well as megafaunal bioturbational features; those 

assessments relate to EFH levels 1 and 2 (Able, 1999).  However, the same imagery 

cannot be used to assess occurrence (EFH level 1) of macrofauna or smaller organisms.   

3.7.1.  Issues related to optical ground truthing 

A fundamental issue in habitat classification is that standard optical images, such 

as discrete sample seafloor photographs that typically image 1 m2 or less, do not directly 

correspond to acoustically-imaged features because of resolution disparities between 

acoustical and optical systems.  How well the photographic images represent what is 

sensed by the sonar cannot be accurately determined unless the optical images span the 

same spatial scales as the acoustic data.  Videography and video mosaicing are cost-

effective means (compared to other optical imaging techniques such as laser line scan) to 

provide optical seafloor imagery that can represent spatial scales corresponding to those 

of acoustic footprints (though perhaps not in all directions).  It is unlikely that biological 

features or small bathymetric features will have acoustic responses that are clearly 

correlated to optical representations.  Because feature-to-feature correspondence between 

acoustic and optical sensing is difficult, co-variability should be examined over distances 

or areas.  Video mosaics provide optical image data that span spatial scales that can be 

achieved with some acoustic systems.   
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Why not simply acquire video or photos at greater heights above the seafloor 

because greater camera-target distance would produce a larger imaged area?  Underwater 

optical imagery is limited by water-column conditions, primarily related to attenuation of 

light by suspended particles.  This light scattering effect is most pronounced in coastal 

waters, but exists throughout the oceans to some degree.  Even when particle 

concentrations are low, light attenuation through clear seawater limits the distance and 

therefore the area that can be imaged reliably.  In the deep sea or other waters where 

benthic boundary layer turbidity can be minimal, the intensity of artificial light sources 

and camera image receptors sensitivity and resolution are limitations.     

 

3.8.  Conclusions 

Video mosaics provide a cost effective way of providing large areal-coverage 

with high resolution and are an appropriate tool to ground truth acoustic data.  It can be 

difficult to keep track of features or organisms seen in only part of video images; those 

can be identified easily in mosaiced images.  To achieve accurate counts of organisms or 

seafloor features from analysis of video imagery, care must be taken to ensure that the 

data represent non-overlapping fields-of-view.  Mosaics eliminate the need to repeatedly 

review portions of a video sequence to define sample areas that do not overlap by 

showing the entire coverage area.  Mosaics can facilitate interpretation of processes 

occurring at spatial-scales not clearly evident in individual video image frames, and 

expand the capabilities of characterization using a common ground-truthing tool.   
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3.11.  Figures for Chapter 3 

 

 

Figure 3.1.  Section of the seafloor (980 by 630 m) in the mouth of the Piscataqua River, 
part of which was delineated using automated segmentation technique involving a 
modified implementation of local Fourier histogram texture feature classification applied 
to gridded bathymetry data from a Reson 8125 (455 kHz) multibeam echosounder (Cutter 
et al., in press).  Seven hypothesized seafloor habitat classes resulting from the 
segmentation are colored in the figure.  A marks the location of the transect where video 
for the rocky region mosaic (Figure 3.2) was acquired, and B marks the location of the 
lobster mesocosm experimental enclosure mosaic (Figure 3.3).   
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Figure 3.2.  Video mosaic image showing the rocky region.  The transition marked in the 
mosaic corresponds to the nearest boundary for texture feature class regions along the 
transect and represents transition from shelly gravelly sediments to bedrock with 
boulders.  Several species of sponges, bryozoans and tunicates are evident on the rocks.   
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Figure 3.3.  Video mosaic image from the lobster mesocosm.  Lobsters (Homarus 
americanus) are labeled with L; 1 is sediment with a micro-algal layer coverage; and 2 is 
bare sediment, although perhaps shallow bioturbated; and 3 is deep bioturbated 
excavations interpreted as crab feeding pits.   
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CHAPTER 4 

 

4.  SEAFLOOR MICROTOPOGRAPHICAL ROUGHNESS 
SPECTRA 

 

4.1.  Citation 

Submitted, Dec. 2004, to:  The Journal of Marine Systems.   

Citation: 

Cutter Jr., G. R., Submitted. Seafloor roughness spectra from sediment profile images. 
The Journal of Marine Systems.  

 

4.2.  Abstract 

 Seafloor roughness spectra were calculated for 34 sediment profile images (SPI) 

from nine sites on the continental shelf off northern California (Eel Margin).  The study 

area spanned nearshore sands, a transitional region, and a mid-shelf flood deposit 

composed of sediment that ranged from sediments from sands to clays.   Sediment-water-

interface (SWI) profiles were extracted by manually tracing the interface from digitized 

sediment profile images, then converting the trace to a one-dimensional numeric series of 

elevation measurements.  Sample intervals were about 0.014 cm and each SWI data series 

spanned a distance of 14 cm.  The method reported in Briggs (1989) was used to calculate 

spectra and spectral slope and intercept parameters.  Although SPI roughness profile 

length scales and sampling intervals were about an order-of-magnitude smaller than those 
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generated from close-range stereo photogrammetry, SPI 1-dimensional spectral slopes and 

intercepts were similar to those derived from stereo photographs (Briggs, 1989).  Mean 

spectral slopes (by site) ranged from -2.05 to -2.60, with an overall weighted mean slope 

of -2.44.  Spectral intercepts were also similar to published values with an overall 

weighted mean of 0.0002, except in the case where the epibiota were considered to be part 

of the interface profile.  This case produced an intercept two orders-of-magnitude larger 

than that from an interface profile that excluded the epibiota, as well as a lower magnitude 

slope.  The power law scaling of seafloor microtopographical roughness distributions 

appears to extend into scales of roughness represented by sediment profile images for this 

study area, and is similar to scaling for lower spatial-frequency roughness-element 

distributions.  Roughness at SPI scales (mm to dm) affects the responses of acoustic wave 

energy used for remote sensing of the seafloor.  Sediment profile images, therefore, can be 

useful for examining seafloor bio-geoacoustic properties.   

 

4.3.  Introduction  

4.3.1.  Background 

A sediment profile imagery (SPI) camera system collects images of vertical cross-

sections of the surficial seafloor sediments (Figure 4.1).  SPI images reveal details about 

the sediment type, fabric, sedimentary layers, mixing depth, infauna, epifauna, biological 

features, microtopographical roughness and habitat quality (see, for instance:  Rhoads 

and Cande, 1971; Rhoads and Germano, 1982 & 1986; Diaz and Schaffner, 1988; Cutter 

and Diaz, 2000; Diaz et al., 2003).   
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 The sediment profile images (SPI) used for this study were previously used by 

Cutter and Diaz (2000) to investigate a flood deposit on the northern California 

continental shelf.  Cutter and Diaz (2000) collected SPI from a transect of 10 stations 

spanning from 28-m to 83-m water depth (Figure 4.2), a transect approximately aligned 

with “Transect S” used during the STRATAFORM-1995 Eel Margin study (Nittrouer 

and Kravitz, 1996) and by Richardson et al. (2002).  Cutter and Diaz (2000) described a 

flood deposit, a transitional region, and inshore sands in the SPI transect.  The facies 

proposed by Cutter and Diaz (2000) were shown to be associated with distinctive 

acoustic-backscatter responses (Borgeld et al., 1999; Richardson et al., 2002) and with 

sediment geoacoustic properties including compressional and shear wave speeds and 

subbottom acoustic penetration depths (Richardson et al., 2002).   

4.3.2.  SPI and roughness measurements 

 Typically, the sediment-water-interface roughness from SPI has been measured 

only as a vertical linear extent, or maximum minus minimum height of the seafloor 

interface observed in the image.  That measurement is desirable because it is simple and 

appears to provide reasonable estimates for the apparent seafloor-roughness length-scale, 

z0, used to calculate seafloor shear stress for modeling sediment-transport (Wright et al., 

1999).  However, simple vertical difference measurements do not describe the 

distribution of roughness elements.  For instance, a single sediment grain or a sloping 

interface could induce the same surface relief measurement produced by the vertical 

differencing method.  Cutter and Diaz (2000) reported the root mean square (RMS) 

deviation roughness values for SPI image interfaces.  RMS measurements describe the 

distribution of roughness in terms of deviation from a reference plane, but they do not 
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convey the spatial frequency distribution for roughness elements.  Therefore, it is 

possible for an interface with many small roughness features to have the same RMS 

roughness as an interface with sparse, widely-spaced  roughness features.  The spectrum 

for an interface elevation series does relate the distribution of roughness in terms of 

spatial frequencies.  A single model with two parameters can be used to describe 

roughness spectra for isotropic roughness.  Two-parameter models have been used by 

Fox and Hayes (1985), Briggs (1989), Jackson and Briggs (1992), Jackson et al. (1996), 

and Briggs e al. (2002) for 1-D spectra and by Lyons et al. (2002) and Pouliquen et al. 

(2002) for 2-d spectra.   

4.3.3.  Eel shelf roughness 

 Along the SPI transect from the Eel shelf, mean RMS roughness for 

sediment-water-interface profiles from SPI was 0.55 cm (�  = 0.3 cm) for the inshore 

sands (28-m to 36-m water depth) with rippled very fine to fine sand, 0.37 cm (�  = 0.15 

cm) for the transitional region (43-m to 55-m water depth), and 0.32 cm (�  = 0.06 cm) for 

the muddy flood deposit regions (Cutter and Diaz, 2000).  Wright et al. (1999) reported 

roughness measurements as sediment relief determined from SPI, as simply the vertical 

difference between maximum and minimum elevations in the seafloor interfaces 

measured in SPI, and roughness lengths calculated from the measured bottom-boundary-

layer flow and shear velocity relationships.  Interestingly, the simple sediment relief 

measurements corresponded closely to apparent roughness estimates determined from 

inversion of boundary layer flow properties.  Table 2 of Wright et al. (1999) reports z0 for 

a site in 60 m water depth as 1.0 cm, and 0.8 cm for a site in 70 m water depth, and Cutter 

(1997) determined surface relief from SPI to be 1.3 cm for a a station in 60 m water depth 
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(near the instrumented Virginia Institute of Marine Science tripod measuring flow 

properties) and 0.9 cm for a 64.m station.  However, Wright et al. (1999) had flow-based 

apparent roughness estimates for only two sites (60-m and 70 m water depths); therefore, 

the relationship might not be generally applicable.   

4.3.4.  Acoustic wavelength scales of SPI 

Because we are trying to make spectral estimates applicable to seafloor acoustic 

data, we consider the acoustic wavelength scales of SPI.  The seafloor profiles extracted 

from SPI as digitized here had a sample interval of approximately 0.014 mm and length 

of 150 mm, providing a resolution of about 0.028 mm and half -series length of 

approximately 75 mm.  Scales of roughness important to acoustic wave responses are 

considered to be 0.1l  to 10l  (Greaves and Stephen, 2000) where l  is the wavelength of 

the acoustic signal.  If 0.3 mm and 75 mm are used as the lower and upper bounds for the 

wavelength scale ranges, then the associated acoustic wavelength scales would be [0.1l   : 

l  : 10 l ], or [0.3 mm : 3.0 mm : 30.0 mm] and [0.75 mm : 7.5 mm : 75 mm].  Assuming 

transmission through seawater with sound speed (c) of 1500 m/s, the highest relevant 

frequencies (f = c/l ) would be 500 kHz (for l  = 3 mm) and 200 kHz (for l  = 7.5 mm).  

Therefore, SPI roughness profiles, capable of resolving roughness features with length 

scales of 0.3  to 75.0 mm, are directly relevant to the interaction of acoustic waves with 

the seafloor for frequencies from about 200 kHz to 500 kHz.  These frequencies are 

typical of shallow-water multibeam echosounders and sidescan sonars.  Directly 

resolving sand grains, pebbles, or cobbles (sediments with dimensions in the wavelength 

scale range) using typical multibeam echosounders or sidescan-sonars is not realistic.  
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Rather, sediments and features in that size range should contribute to the behavior of the 

scattered acoustic waves.   

4.3.5.  Seafloor roughness spectra 

 Seafloor roughness spectra have been estimated for very low spatial frequencies 

(and large spatial scales) using deep-sea bathymetry (e.g. Fox and Hayes, 1985; Fox, 

1996) and acoustic backscatter data (Dziak et al., 1993; Matsumoto et al., 1993), and for 

high spatial frequencies using seafloor stereo photogrammetry or other methods (Stanic 

et al., 1988; Briggs, 1989; Stanic et al.,1989; Jackson and Briggs, 1992; Jackson et al., 

1996; Briggs et al., 2002; Lyons et al., 2002; Pouliquen et al., 2002).  Previous works 

describing seafloor roughness spectra have reported spectra for spatial frequencies as 

high as 5 cycles/cm (Briggs et al., 2002).  This study uses data derived from SPI profiles 

allowing estimation of one-dimensional (1-D) roughness spectra within the range of 

approximately 0.07 cycles/cm (~14 cm) to more than 30 cycles/cm (~0.03 cm).   

Fox (1996) used two-dimensional (2-D) spectra to describe seafloor roughness for 

deep-sea bathymetry based on a four-parameter model, where the two additional 

parameters provided estimates of anisotropy and peaks in amplitude spectra in addition to 

slope and amplitude.  Lyons et al. (2002) used 2-D spectra from seafloor digital stereo-

photos and modeled the roughness using a two-component model that incorporates 

statistical descriptions of the anisotropic, quasi-periodic sand ripples in addition to the 1-

D power law model for isotropic components.   
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4.3.6.  Terminology 

Studies using spectral models to describe seafloor roughness have used different 

methodologies and terminology.  Most studies of seafloor spectral roughness assume that 

roughness can be modeled according to a power law of the form 

W(k)=� k-�  

Where W(k) represents the power spectral density as a function of spatial frequency 

(wavenumber), k (cycles per arbitrary length unit), g represents the spectral exponent, and 

spectral strength, b,  represents the value of the spectrum at a specified reference 

wavenumber (see Fox and Hayes, 1985; Jackson et al, 1986; Lyons et al, 2002). Similar 

or equivalent parameters can be found with different names in different studies, for 

instance w2 is used to represent spectral strength in the APL-UW (1994) model.  The 

parameters “amplitude proportionality”, “spectral strength”, “spectral offset”, and 

“spectral intercept” are related.  In addition, “spectral slope”, “spectral exponent”, and 

“roll-off” are related.  The “slope” and “intercept” parameters are from linear models fit 

by regressing spectral variance on spatial frequency.   

Fox and Hayes (1985) and Fox (1996) use amplitude spectra, whereas most other 

studies use power spectra (amplitude is the square-root of power), and some studies 

report 2-D spectral parameter estimates, even though they were estimated from 1-D 

spectra.  Therefore, parameter values from different studies cannot be directly compared 

unless adjusted to common form.  Slope parameters are simpler to adjust than intercept or 

offset parameters because offsets are particular to a specified spatial frequency, usually 

defined as a spatial frequency of 100 = 1-cm.  The spatial scales (spatial frequency bands) 

described in studies of deep-sea bathymetry do not overlap scales represented by seafloor 
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photographs, and therefore do not share common reference spatial frequency for the 

intercept or offset parameters.  Extrapolation to 1-cm spatial frequency is required to 

make intercept or offset parameters comparable.   

The terms for the spectral parameters estimated here, spectral slope and spectral 

intercept, were used in accordance with Stanic et al. (1988), Briggs (1989), Stanic et al. 

(1989), Jackson and Briggs (1992), Jackson et al. (1996), and Briggs et al. (2002).  

Spectral slope as calculated here is related to the spectral slope parameter of Fox and 

Hayes (1985), and the spectral intercept parameter reported here is analogous to the 

proportionality constant (â) of Fox and Hayes (1985).  However, â effectively represents 

an intercept of the amplitude spectrum at a spatial frequency of 1 km, whereas the 

spectral intercept here represents the power spectrum at a spatial frequency of 1 cm.   

APL-UW (1994), Jackson et al. (1986), Lyons et al. (2002), Pouliquen et al. 

(2002) and Sternlicht and de Moustier (2003) use two-dimensional forms of the spectral 

slope and intercept parameters, called spectral exponent (g) and spectral strength (w2 or 

b) in accordance with the composite roughness acoustic-backscatter model of Jackson et 

al. (1986).  The two-dimensional spectral parameter values summarized by Sternlicht and 

de Moustier (2003) were derived from exponents of 1-D spectra from Jackson et al. 

(1986), Stanic et al. (1988), Briggs (1989), Stanic et al. (1989), Jackson and Briggs 

(1992), and Jackson et al. (1996).  Spectral exponent can be converted from one-

dimensional (g1) to two-dimensional (g2) form by  

g2 = g1 + 1    
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(APL-UW, 1994).  The “spectral exponent” in the 2-D form reported in APL-UW (1994) 

and Jackson et al. (1986) is the negative of the one-dimensional spectral slope value plus 

one:  

g2  = -Slopespec-1D + 1.  

Two-dimensional spectral strength (� 2 or w2) is a function of one-dimensional spectral 

strength (� 1) and the 2-D spectral exponent (g2), according to:    

 � 1 = p1/2� [(g2-1)/2]� 2/ � (g2/2)  

where �  is the gamma function (Jackson et al., 1986). 

In this study, roughness spectra are estimated for seafloor profiles extracted from 

the SPI images based on the method described by Briggs (1989).  These one-dimensional 

spectral parameter results could be converted to two-dimensional forms in order to 

provide spectral parameter estimates in accordance with those used by acoustic models 

such as Jackson et al. (1986) and APL-UW (1994).   This study reports the values of the 

parameters called here spectral slope and intercept directly estimated from SPI spectra.  .  

The spectral slope parameter effectively relates the relative contribution of low- to high-

frequency roughness, such that more negative spectral slope indicates dominance of the 

low frequencies relative to high frequencies.   

 

4.4.  Methods 

4.4.1.  Study area 

 Images from nine of the ten SPI stations (Table 4.1) occupied by Cutter and Diaz 

(2000) were used for spectral roughness estimation.  The stations occupied were located 
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approximately along the shore-normal “Transect S” used during the STRATAFORM-

1995 study of the Eel Margin as shown in Figure 4.2.   

4.4.2.  Images and seafloor profiles 

 The sediment profile images were collected in December 1995 using a Benthos 

model 3731 sediment profiling camera and 100 ASA Fuji color slide film.  The slides 

were digitized and seafloor profiles were extracted by manually tracing the sediment-

water-interface apparent at the profile camera prism window. Small parts of the interface 

in the digitized SPI images were magnified in order to maximize resolution.  The result of 

manually tracing the interface was a vector with horizontal- and vertical-dimension 

coordinates (x,z) that represent a data series with sampling intervals equal to pixel 

dimensions of 0.014 mm (Figure 4.3).  The data series from SPI seafloor profiles were 

made piecewise continuous by eliminating elevations occurring beneath any overhangs 

that produced multi-valued series with multiple elevations for a single horizontal 

coordinate.   

4.4.3.  Spectral Analysis 

 The method of Briggs (1989) was used to estimate SPI roughness spectra.  Code 

to process the data and estimate spectra was tested for accuracy and agreement to 

previous implementations by applying the code to seafloor profile data from stereo 

photographs used by Briggs (1989) and comparing the results.  The method involves 

“prewhitening” the relative seafloor height data by taking the first differences of the data 

series (series differenced at lag of one sampling interval), applying a 20 % cosine taper 

window to the differenced series, calculating an uncorrected periodogram using the 

magnitude values from a fast Fourier transform of the data, then correcting the 
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periodogram for the “prewhitening” by a factor of 4sin2(pfjD), where f is the spatial 

frequency for interval j=1:N, and N is the number of samples in the series, and D is the 

digitizing interval (Briggs, 1989).  The process is demonstrated graphically in Figure 4.4 

where prewhitened and corrected spectra are shown.  The same methodology has been 

used by Fox and Hayes (1985), and Jackson and Briggs (1992) to estimate seafloor 

spectra.  Slopes and intercepts of SPI spectra were determined from ordinary-least-

squares fit regressions over the entire range of spatial frequencies.   

  Rather than perform an ensemble average to estimate overall spectral 

slope of the regression, a weighted mean slope (Slope_wm) value was calculated by the 

following method: 

Slope_wm
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 where g represents the number of groups, in this case sampling sites, m represents the 

number of samples per site, w represents the weight, and s the sample slope.  The inverse 

of the sample variance for each site were used for the weights.   

 

4.5.  Results and Discussion 

4.5.1.  SPI Spectral roughness parameters overall and by site 

One image (S95_8-5) contained sea pens (Figure 4.5).  The inclusion of the 

outline of the sea pens as part of the seafloor roughness profile was done only for 

comparison of such an extreme case to more typical profiles.  The sea pens extended 

about 10 cm vertically from the sediment-water-interface, and had an ornate shape.  Most 
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of the profile of the sea pens was overlapping along the horizontal direction; therefore, 

the profile data series for the sea pens used for spectral analysis resembled a large vertical 

spike.  Such a representation and the effects upon spectral roughness parameter values 

was not justifiable for characterization of roughness in terms of hydraulic effects or 

acoustic backscatter effects.  There may be cases where it would make sense to include 

the faunal profiles as part of the seafloor roughness profile; however, not in this case, 

because the effect would produce a roughness estimate that does not realistically 

represent physical quantities affecting acoustic scattering or hydraulic roughness.  

Therefore, the sea pens were excluded from the seafloor profile for calculation of 

statistics; however, for the profile including the sea pens the estimates of the spectral 

slope was -1.775 and the spectral intercept was 0.038 cm3 (Table 4.2: S95_8-5bio).     

Considering all of the individual SPI seafloor profiles, but excluding the outline 

with the sea pens, spectral slopes ranged from -2.06 to -2.052 (N = 34) and spectral 

intercepts ranged from 0.00016 to 0.0012 cm3 (Table 4.2).  The unweighted overall mean 

spectral slope was -2.39 (� =0.14) and the unweighted overall mean spectral intercept was 

0.00027 (� =0.00017).  The overall weighted mean spectral slope was -2.44, and overall 

weighted mean spectral intercept was 0.0002 cm3.   

 One sample profile (S95_1-3) resulted in high values for slope and intercept, and 

was determined to have a disturbed interface (Figure 4.5).  The source of disturbance 

could not be identified, but those data were excluded from the calculations of the overall 

statistics.  For the disturbed profile from S95_1-3, the spectral slope was -2.052, and the 

intercept was 0.00118 cm3 (Table 4.2).   
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Excluding the disturbed profile (S95_1-3) and the profile containing the sea pen 

(S95_8-5), the overall range of spectral slopes was -2.06 to -2.046, and the range of 

spectral intercepts was 0.00016 to 0.00048 cm3.  The profile with the sea pen produced an 

unusually low (less steep) spectral slope and a high spectral intercept compared to the rest 

of the observations and to other studies.  The disturbed profile produced a relatively high 

spectral slope, and a spectral intercept that was 2.5 times higher than any of the other 

undisturbed profiles.  Because of this effect, spectra might be a way to detect the 

presence of disturbance in SPI image interfaces.  The unweighted overall mean spectral 

slope, excluding the sea pens profile and the disturbed profile from S95_1-3, was -2.40 

(� =0.13), and the unweighted overall mean spectral intercept was 0.00024 cm3 

(� =0.000081).   

Mean spectral slopes values by site (N = 9), excluding data from S95_1-3 ranged 

from -2.55 (� =0.034; Site 8) to -2.22 (� =0.23; Site 2) (Table 4.3).  Mean spectral 

intercepts by site ranged from 0.00019 (� =0.00003; Site 7) to 0.00035 cm3 (� =0.00011; 

Site 8) (Table 4.3).   

4.5.2.  Roughness parameters by depth and facies 

 SPI spectral slope values increased approximately linearly with increasing water 

depth, varying from approximately -2.55 in 30 m to -2.25 in 80 m water depth (Figure 

4.6).  SPI spectral intercept values decreased from approximately 0.00035 to 0.0002 cm3 

between 30 and 50 m, then increase to 0.0005 cm3 in 80 m (Figure 4.6).  

Several studies have identified distinct sediment facies in the study area, primarily 

nearshore sands and a mid-shelf flood deposit.  Mean SPI spectral slope values became 

less steep going from sand to transition to flood-deposit region (Figure 4.7).  Mean SPI 
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spectral intercept values were low in the transitional region, and were high in the sand 

and flood deposit facies (Figure 4.7).  The higher spectral intercepts in the sand and 

flood-deposit regions indicated that the overall magnitude of roughness was higher in 

those regions compared to the transitional region.   

That overall roughness magnitude was higher in the flood-deposit was expected 

because the deposit was known to be highly bioturbated by infauna (Cutter and Diaz, 

2000).  Similarly, Cutter and Diaz (2000) reported high RMS roughness for the sand and 

flood-deposit facies, suggesting that the high RMS in the deposit resulted from 

bioturbation.  However, RMS alone would not distinguish the flood-deposit from the 

sand facies.  Here, we find that although SPI spectral intercepts were not distinguishable 

between the sand and flood-deposit facies, the SPI spectral slopes were different 

(significantly at p=0.05, according to a Tukey-Kramer HSD test for equivalence of 

means).  Although the sediment grain-size distributions were different between the facies, 

the individual grains did not comprise the roughness features.  Although grains may 

comprise the roughness features in other geographic locations, here the bedforms and 

biogenic features comprise the roughness elements.  Therefore, for the Eel Margin study 

area, the relationship between roughness and sediment grain size is not direct.   

4.5.3.  Possible artifacts and need for comparative studies 

 The sediment-profile camera is a partially destructive sampling device; it does not 

extract material, but it does move and compress sediment during deployment.  Although 

the images can usually reveal whether the camera system has disturbed the seafloor, there 

may be some subtle, systematic, yet unidentified disturbances to the seafloor interface  

The SPI prism could cause unconsolidated sediment grains to shift or be suspended, and 
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perhaps cause sediment to bulge as the prism penetrates.  To determine the extent of the 

potential disturbance and impacts on roughness estimates, it would be beneficial to 

simultaneously collect SPI and plan-view stereo images, so that the stereo images would 

capture the seafloor interface before and after SPI prism penetration.  The SPI sediment-

water-interfaces used for this study were apparently intact, and any obviously disturbed 

interfaces were excluded from analysis.  However, it is important to establish whether the 

small-scale roughness feature distributions described by spectral analysis are natural, and 

not induced.  If the SPI system does cause disturbances and alter the spectra, then 

accounting and correcting for the disturbances is important.   

4.5.4.  Anisotropy 

Anisotropic roughness occurred in the sand facies in the form of sand ripples.  

The SPI interface profiles and spectra were not adjusted for orientation relative to the 

ripples.  Some of the SPI profiles were aligned across ripple crests and others were 

aligned along the ripple-crest strike.  The ripple wavelength relative to the spatial 

frequency band represented by the measured profile will determine how ripples influence 

the spectrum.  In this case, the ripples observed the Eel Margin, inner shelf using SPI had 

wavelengths on the order of 10 to 15 cm.  Those wavelengths represent about half of the 

lowest frequencies described by the SPI profiles and spectra.  Across-strike spectra 

should have more negative spectral slopes representing a steeper decrease, and along-

strike spectra should have less negative spectral slopes.  Consequently, by ignoring 

orientation of SPI profiles in rippled sediments, and averaging spectral parameters over 

that facies, the roughness for the rippled, anisotropic regions was underestimated.     
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4.6.  Conclusions 

The combination of two spectral parameter estimates (slope and intercept) provide 

a better discrimination of seafloor facies and classification of seafloors than estimates of 

roughness from vertical elevation differences or RMS deviation.  The amount of time 

required and level of complication involved with generating spectra from SPI profiles and 

estimating spectral parameters could be worth the expense.  Automation of the process 

would make SPI valuable to more studies.   

Spectral roughness estimates were made on 34 SPI images from the Eel Margin.  

The unweighted overall mean SPI spectral slope, excluding a profile with sea pens and a 

disturbed profile, was -2.40, and the unweighted overall mean spectral intercept was 

0.00024 cm3.  That spectral slope value and its corresponding 2-D spectral exponent of 

3.4, and the spectral intercept are within the range reported for published values.  The 

range of SPI spectral slope values (-2.60 to -2.05) suggests that spectral slope (or spectral 

exponent) should not be considered a constant term for models, even for the spatial 

frequencies of microtopographical profiles.  The relationships between spectral slope and 

intercept values and physical and biogenic roughness and associated seafloor facies 

(Figures 6 and 7) suggest that local seafloor zonation and facies distributions should be 

accounted for when interpreting and applying roughness spectra parameter values.   
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4.9.  Tables for Chapter 4 

Table 4.1.  Position and depth data for SPI samples (from the Eel shelf) used for seafloor 
roughness spectral analysis.  Stations are listed in order of decreasing water depth.     
Station Rep #Prof #Surf Date Time(GMT) Lat (North) Lon (West)   
1 1 5 6 12/6/95 222443 40 57.801 124 16.927 
1 2     40 57.781 124 16.897 
1 3     40 57.799 124 16.872 
1 4     40 57.797 124 16.87 
1 5     40 57.783 124 16.877 
1 6     40 57.78 124 16.87 
2 1 5 5 12/6/95 231847 40 53.62 124 15.852 
2 2     40 53.624 124 15.801 
2 3     40 53.619 124 15.801 
2 4     40 53.611 124 15.792 
2 5     40 53.616 124 15.799 
3 1 5 5 12/6/95 233122 40 53.427 124 15.418 
3 2     40 53.365 124 15.408 
3 3     40 53.364 124 15.395 
3 4     40 53.353 124 15.381 
3 5     40 53.339 124 15.366 
10 * 1 5 5 12/7/95 221223 40 52.977 124 14.822 
10 * 2     40 52.954 124 14.825 
10 * 3     40 52.951 124 14.822 
10 * 4     40 52.953 124 14.827 
10 * 5     40 52.947 124 14.841 
4 1 5 5 12/6/95 000026 40 52.96 124 14.501 
4 2     40 52.968 124 14.483 
4 3     40 52.975 124 14.485 
4 4     40 52.98 124 14.482 
4 5     40 52.974 124 14.476 
5 1 5 5 12/7/95 191453 40 53.131 124 13.875 
5 2     40 53.123 124 13.894 
5 3     40 53.124 124 13.895 
5 4     40 53.138 124 13.887 
5 5     40 53.148 124 13.867 
6 1 5 5 12/7/95 193535 40 52.962 124 13.805 
6 2     40 52.968 124 13.785 
6 3     40 52.969 124 13.786 
6 4     40 52.969 124 13.747 
6 5     40 52.967 124 13.746 
7 1 5 5 12/7/95 205531 40 51.988 124 13.762 
7 2     40 52.001 124 13.771 
7 3     40 51.998 124 13.776 
7 4     40 51.994 124 13.774 
7 5     40 51.995 124 13.769 
9 1 1 6 12/7/95 213858 40 52.194 124 12.867 
9 2     40 52.188 124 12.851 
9 3     40 52.193 124 12.855 
9 4     40 52.191 124 12.861 
9 5     40 52.179 124 12.864 
9 6     40 52.17 124 12.86 
8 1 5 5 12/7/95 211642 40 51.651 124 12.723 
8 2     40 51.65 124 12.736 
8 3     40 51.663 124 12.744 
8 4     40 51.663 124 12.746 
8 5     40 51.668 124 12.727   
TRIPODS  
VIMS(S-70) 40 53.648 124 16.993 
VIMS(S-60) 40 53.434 124 15.158 
UW(S-60) 40 53.395 124 15.333 
USGS(S-50) 40 53.82 124 13.82 

* Not included in spectral analysis.  
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Table 4.2. Roughness spectra model parameter estimates for Eel shelf SPI profiles.   
Station Slope Intercept 

(cm3) 
S95_01-1 -2.380 0.00025000 

S95_01-3 * -2.052 * 0.00118000 * 

S95_01-4 -2.158 0.00025421 

S95_01-6 -2.439 0.00025412 

S95_02-2 -2.046 0.00019575 

S95_02-4 -2.133 0.00047815 

S95_02-5 -2.474 0.00024183 

S95_03-1 -2.419 0.00028582 

S95_03-2 -2.489 0.00023817 

S95_03-3a -2.277 0.00016344 

S95_03-4 -2.322 0.00021014 

S95_03-5 -2.391 0.00025567 

S95_04-1 -2.422 0.00024346 

S95_04-2 -2.314 0.00020017 

S95_04-3 -2.383 0.00015731 

S95_04-4 -2.414 0.00015514 

S95_04-5a -2.387 0.00018162 

S95_05-1 -2.558 0.00024006 

S95_05-2 -2.507 0.00022742 

S95_05-3 -2.405 0.00020862 

S95_05-4 -2.316 0.00015836 

S95_05-5 -2.305 0.00017596 

S95_06-1 -2.596 0.00038159 

S95_06-2 -2.312 0.00028182 

S95_06-3 -2.400 0.00015695 

S95_06-4 -2.383 0.00016272 

S95_06-5 -2.571 0.00031570 

S95_07-1 -2.427 0.00017832 

S95_07-2 -2.337 0.00017172 

S95_07-3 -2.432 0.00023701 

S95_08-2 -2.513 0.00021656 

S95_08-4 -2.581 0.00041174 

*S95_08-5bio -1.775 * 0.03783437 * 

S95_08-5nobio -2.552 0.00041425 

S95_09-1 -2.446 0.00026566 

* Excluded from analyses and summary statistic calculations.  

 



 89 

Table 4.3.  Eel shelf SPI spectral parameters, excluding 1-3 and 8-5bio:  mean and 
standard deviation (� ) by sample site.   

Site N Slope �  (Slope) Intercept 

(cm3) 

�  (Intercept) 

(cm3) 

Depth 

(m) 

1 3 -2.326 0.148 0.000253 0.0000024 83 

2 3 -2.218 0.226 0.000305 0.0001515 64 

3 5 -2.380 0.083 0.000231 0.0000465 60 

4 5 -2.384 0.043 0.000188 0.0000364 52 

5 5 -2.418 0.113 0.000202 0.0000344 50 

6 5 -2.452 0.124 0.000260 0.0000980 48 

7 3 -2.399 0.053 0.000196 0.0000359 43 

8 3 -2.549 0.034 0.000348 0.0001134  28 

9 1 -2.446 . 0.000266 . 36 

overall 33 -2.397 0.126 0.000242 0.0000808  
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4.10.  Figures for Chapter 4 

 

 

 

 

Figure 4.1. Sediment profile imagery (SPI) camera diagram and example image.   
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Figure 4.2.  Study area off northern California, USA, near latitude , longitude 124 W.  
Sediment profile image (SPI) transect from the STRATAFORM-1995 study. 
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Figure 4.3.  Example of sediment profile image, manually traced sediment-water-
interface seafloor profile, and extracted profile data series obtained by manual 
tracing.   
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Figure 4.4.  Examples of a prewhitened and estimated spectrum (corrected periodogram) 
from a SPI seafloor profile.   
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Figure 4.5.  SPI images with a) sea pens, and b) disturbed interface.   
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Figure 4.6.  SPI spectral roughness parameters, summarized by depth.  (a) Spectral slope, 
and (b) spectral intercept. 
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Figure 4.7. SPI spectral roughness parameters, summarized by facies.    (a) Spectral 
slope, and (b) spectral intercept.   
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CHAPTER 5 

 

5.  FACIES FROM THE LOWER PISCATAQUA RIVER (GREAT 

BAY ESTUARINE SYSTEM) CHARACTERIZED USING 

PHYSICAL SAMPLES AND VIDEO IMAGES 

 

5.1.  Introduction 

This chapter explores facies characteristics that may be inferred from multibeam 

bathymetry and acoustic backscatter data and from mosaiced seafloor video imagery, as 

discussed in previous chapters.  Specifically, this chapter deals with characterizing 

seafloor facies by grain-size distributions.  Sediment grain size often is important to 

benthic fauna and to acoustic backscatter amplitudes.  Although grain size is not the only 

factor involved in the complex relationships among those phenomena, often it is a 

primary factor and sometimes grain-size can be used as a surrogate for multiple related 

factors.  It is not specifically grain size that determines what lives in a given area or what 

the acoustic backscatter will be, but rather grain size or facies type often is directly 

related to the physical environmental conditions that have the most influence.   

Sediment samples and seafloor video images were collected to provide detailed 

characterizations of facies for ground truthing bathymetric and backscatter data and to 

develop habitat maps for the lower Piscataqua River (part of the Great Bay Estuary).  
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Many sites in the Piscataqua River had previously been sampled and mapped by Ward 

(1995), however only a few samples existed within this study area.  Habitat suitability 

index (HSI) maps had been developed previously by Banner and Hayes (1996); however, 

only for the upper Piscataqua River and Great Bay Estuary proper.   

Fot this study, sediments were characterized using several methods, and 

comparisons of the results from the different methods were made and sediment grain size 

distributions were measured from physical samples of the seafloor.  Sediment classes 

were also assigned based on the sample distributions.  Sediment classes from video 

images were assigned based on visual analysis of from locations where physical samples 

were acquired.  Sediment distributions were also estimated from analysis of video 

images.  Comparisons were made between sediment classes determined from physical 

sample data and image analysis and between distributions estimated from physical 

sample data and image analysis.   

If multibeam bathymetry and backscatter data are to be ground truthed, or 

empirical models relating acoustic backscatter to sediment properties are to be 

constructed, or habitat maps are to be developed, then data from multiple approaches to 

ground truthing should be compatible.  It would be beneficial to be able to use the most 

efficient and cost-effective ground-truthing methods possible.  However, if the data from 

different sources or methods do not agree, or the data are unable to relate the same 

information, then one method may not be substituted for another.  This study shows that 

agreement between facies characterizations from physical sample and image data can be 

good, but it is dependent upon the level of detail.   
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5.2.  Methods 

5.2.1.  Sediment sampling 

Sediment samples were collected from the Piscataqua River mouth, east of 

Newcastle Island, New Hampshire on 04 and 05 September, 2002 from the UNH vessel 

R/V Gulf Challenger.  Sample locations were chosen according to a randomized block 

design.  Seven seafloor morphological classes derived from the texture analysis of 

multibeam bathymetry data within the study area (Cutter et al., 2003) were used as blocks 

(strata).  Ten random positions were chosen within each class using the Minnesota DNR 

Sample Generator extension for ArcView GIS software (ESRI) 

(http://www.dnr.state.mn.us/mis/gis/tools/arcview/extensions/sampling/dnrsample.html).  

If the generated samples appeared to be too close to the edge of a defined class region or 

if the distribution of samples among the class regions did not appear uniformly random, 

then samples were regenerated.  The locations of two samples within the sand wave field 

(SWF) were arbitrarily changed so that the SWF would be represented by two samples in 

the north and two in the south, and with one on the eastern and one on the western sides 

of the SWF.  This was done because the asymmetrical shapes of the megaripple bedforms 

in the SWF suggested that they were formed by ebb tide currents on the east side of the 

SWF and flood tide currents on the west side of the SWF.  Only a portion of the original 

study area (Cutter et al., 2003) was sampled.  Most samples were allocated within an area 

bounded approximately with the extent of the data from the Simrad EM3000 multibeam 

echosounder survey.  The sediment sample study area comprised a region bounded by 

Universal Transverse Mercator (UTM, Zone 19, WGS-1984) coordinates:  E 361000, N 
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4769275 and E 361750, N 4770250 m.  Forty sites were visited to collect sediment 

samples (Figure 5.1).   

 

 

Figure 5.1.  Locations of the sediment sample sites collected in 2002 (39 
of the 40 sites visited are shown; 03_1 is off the map to the north).  Sites 
are labeled with station identifier; coordinates are UTM, zone 19 north. 
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At each site, prior to the collection of a sediment sample, a video camera was 

deployed to the bottom and images were recorded while the camera frame was on 

bottom, with the camera looking downward.  Then, the station was reoccupied by the 

vessel and a sediment sampler was deployed.  Sample station positions from a Raytheon 

Raystar 398 differential Global Positioning System (DGPS) receiver system were 

recorded aboard the R/V Gulf Challenger (Table 5.1).  The DGPS antenna was 

approximately 8 m aft of the A-frame from which the samplers were deployed.   
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Table 5.1.  Recorded coordinates for sediment sample stations.  
Coordinates are longitude and latitude (decimal degrees) and UTM 
Easting and Northing (m).  

Sample Code  
(Cruise-date_ID) 

Longitude  
 (degrees) 

Latitude 
(degrees) 

Easting 
(m) 

Northing 
(m) 

200209_01_2 -70.69985 43.07233 361609.2 4770249.5 
200209_01_4 -70.70622 43.06625 361077.2 4769584.5 
200209_01_5 -70.70643 43.07005 361068.1 4770006.8 
200209_01_7 -70.70158 43.06945 361461.6 4769932.2 
200209_02_1 -70.70650 43.06582 361053.1 4769536.8 
200209_02_2 -70.70603 43.06517 361089.7 4769463.9 
200209_02_7 -70.70275 43.07185 361372.1 4770200.6 
200209_02_10 -70.70320 43.06627 361322.8 4769581.3 
200209_03_1 -70.70425 43.07620 361259.7 4770686.2 
200209_03_2 -70.70058 43.06360 361529.9 4769280.9 
200209_03_7 -70.70298 43.06758 361343.5 4769727.2 
200209_03_9 -70.70150 43.06375 361455.6 4769299.0 
200209_03_10 -70.70165 43.06883 361454.8 4769863.8 
200209_04_1 -70.70415 43.06603 361245.0 4769557.0 
200209_04_2 -70.70523 43.06928 361164.1 4769919.7 
200209_04_3 -70.70425 43.06615 361237.1 4769570.1 
200209_04_5 -70.70407 43.06926 361259.0 4769915.9 
200209_04.1_2 -70.70547 43.06951 361145.6 4769946.0 
200209_04.1_3 -70.70735 43.06520 360982.5 4769469.7 
200209_04.1_4 -70.70177 43.07042 361448.9 4770039.8 
200209_04.1_5 -70.70323 43.06627 361320.1 4769581.4 
200209_05_1 -70.70590 43.07195 361115.8 4770216.9 
200209_05_2 -70.70247 43.07202 361395.5 4770218.7 
200209_05_3 -70.70023 43.06445 361560.3 4769374.7 
200209_05_5 -70.70270 43.06555 361361.9 4769500.9 
200209_05_7 -70.70050 43.06695 361544.2 4769652.8 
200209_05_8 -70.70223 43.06713 361403.5 4769676.0 
200209_05_9 -70.69978 43.06402 361596.0 4769325.8 
200209_05_10 -70.70302 43.06403 361332.7 4769333.0 
200209_06_1 -70.70720 43.06967 361004.8 4769965.5 
200209_06_2 -70.70537 43.07098 361157.1 4770108.7 
200209_06_3 -70.70068 43.06590 361526.9 4769536.5 
200209_06_4 -70.70363 43.07038 361296.8 4770039.2 
200209_06_5 -70.70252 43.07188 361391.1 4770203.9 
200209_06_8 -70.70328 43.06913 361322.5 4769899.8 
200209_07_3 -70.70385 43.06505 361267.2 4769447.3 
200209_07_5 -70.70020 43.06830 361571.7 4769802.2 
200209_07_6 -70.69927 43.06560 361641.6 4769500.8 
200209_07_9 -70.70027 43.06515 361559.2 4769452.5 
200209_07_11 -70.70750 43.06653 360973.3 4769618.1 
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Sampling using a box corer had been planned, but because the box corer often 

failed to recover sediments because of large unconsolidated grains, a Shipek grab sampler 

was used for most samples.   The Shipek grab scoop was 10.2 cm deep, the scoop top was 

19.8 cm wide and 19.8 cm long, with a capacity of 3 L.  Dimensions of the box corer 

were 25 by 25 cm (0.0625 m2).  Divers collected cores from two stations using a 10-cm 

diameter plastic core tube.  For diver core collection, divers descended down the video 

camera cable deployed from the stern of the boat.  Prior to the divers collecting the core, 

they acquired video footage of the seafloor where the core was to be acquired.   

Sediment samples were recovered from 33 locations.  Of the 33 samples 

recovered, 3 samples were successfully collected using the box corer, 28 samples were 

collected using the Shipek grab, and 2 samples were collected by divers (Table 5.2).  In 

order for a sample to be accepted, the general requirement was that the depth of sediment 

in the device was required to be at least 5 cm, and the surface had to be intact, otherwise 

the sample was discarded and another acquired.  One sample had less than the required 

depth of material, but was kept anyway because of multiple attempts with little or no 

recovered material.   

Table 5.2.  Sediment samples collected by device. 

Type Count 

Total Sites Visited 40 

No Sample 7 

Samples Recovered 33 

Shipek 28 

Box Corer 3 

Diver core 2 
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The identity of one sample could not be confirmed after analysis, and therefore 

grain size distribution data were produced for 32 of the physical samples collected (Table 

5.3).   

Table 5.3.  List of all grab samples with USGS grain-size 
analysis data. 

 Cruise Station Sampling 

N ID ID Device 

1 200209 01_ 2 Shipek 

2 200209 01_ 4 Shipek 

3 200209 01_ 5 Shipek 

4 200209 01_7 Shipek 

5 200209 02_1 Box corer 

6 200209 02_2 Box corer 

7 200209 02_7 Shipek 

8 200209 02_10 Shipek 

9 200209 03_1 Shipek 

10 200209 03_2 Shipek 

11 200209 03_10 Shipek 

12 200209 04_1 Box corer 

13 200209 04_2 Shipek 

14 200209 04_3 Shipek 

15 200209 04_5 Shipek 

16 200209 04.1_2 Shipek 

17 200209 04.1_3 Shipek 

18 200209 04.1_4 Shipek 

19 200209 04.1_5 Diver core 

20 200209 05_3 Shipek 

21 200209 05_8 Shipek 

22 200209 05_9 Shipek 

23 200209 06_1 Shipek 

24 200209 06_2 Shipek 

25 200209 06_3 Shipek 

26 200209 06_4 Shipek 

27 200209 06_5 Shipek 

28 200209 06_8 Shipek 

29 200209 07_3 Shipek 

30 200209 07_5 Shipek 

31 200209 07_9 Shipek 

32 200209 07_11 Diver core 

 

Video imagery was acquired at seven additional stations where no physical 

samples were recovered.  At these stations rocks and boulders were observed in the 
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video, or the sampler failed to recover material.  For these seven samples, sediment grain-

size distributions were estimated from video images.  Table 5.4 relates which samples 

were subject to which analysis.   
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Table 5.4.  Sources of sediment grain-size data are indicated for each 
sample station. 

Phys or Image 
Count 

USGS 
Count 

Sample_ID 
USGS grain-
size analysis 

Image 
analysis 

1 1 01  2 + + 
2 2 01  4 + + 
3 3 01  5 + + 
4 4 01  7 + + 
5 5 02  1 + + 
6 6 02  2 + + 
7 7 02  7 + + 
8 8 02  10 + + 
9 9 03  1 + + 
10 10 03  2 + + 
11  03_7  + 
12  03_9  + 
13 11 03  10 + + 
14 12 04  1 + + 
15 13 04  2 + + 
16 14 04  3 + + 
17 15 04  5 + + 
18 16 04.1  2 + + 
19 17 04.1  3 + + 
20 18 04.1  4 + + 
21 19 04.1  5 + + 
22  05_1  + 
23  05_2  + 
24 20 05  3 + + 
25  05_5  + 
26  05_7  + 
27 21 05  8 + + 
28 22 05  9 + + 
29  05_10  + 
30 23 06  1 + + 
31 24 06  2 + + 
32 25 06  3 + + 
33 26 06  4 + + 
34 27 06  5 + + 
35 28 06  8 + + 
36 29 07  3 + + 
37 30 07  5 + + 
38  07_6  + 
39 31 07  9 + + 
40 32 07  11 + + 

 

Sediment subsamples for grain-size analysis were extracted from each grab 

sample using a large stainless steel spoon, then stored in plastic bags at room temperature 

until analysis.  The remainder of the sample was prepared for macrofaunal analysis by 
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washing using seawater on a 500-� m sieve, and fixed with 10 % formalin solution in 

plastic jars.  The samples were transferred from formalin to 95 % ethanol within three 

days to preserve them.   

5.2.2.  Sediment Grain Size Distributions from Physical Samples  

Analysis of grain-size distribution was performed by the Laboratory of Dr. James 

Gardner at the USGS Western Region Coastal and Marine Geology Program, Menlo 

Park, California.  Grain size was determined at 0.25-phi intervals.  All samples were wet 

sieved into gravel, sand and fines (silt and clay) fractions, then analyzed as follows: 

   greater than -1.0 phi (2 mm) ------------------------- washed, dried and weighed 

   between 4.0 phi (63 � m) and -1.0 phi (2 mm) ----  settling tubes 

   less than 4.0 phi (63 � m) -----------------------------  Beckman Coulter laser diffraction.  

Menking et al. (1993) describe the USGS grain size analysis methods in some detail.  The 

grain-size statistics for the distribution data from these methods were generated with a 

USGS program, SDSZ (Pers. Comm., J. Gardner, USGS, 2003).  The mean and median 

grain size, sorting, skewness and kurtosis were calculated using three different methods, 

those of Folk and Ward (1957), Inman (1962) and Trask (1930).  Details of the Inman 

and Trask statistics can be found in Menking et al. (1993).  Details of the Folk and Ward 

(1957) statistics are provided here.  The statistics were originally developed so that they 

could be estimated from graph analysis, therefore they use percentile values from 

cumulative distributions of grain-size data in phi units, where the grain size diameter (� ) 

is 

  �  = -log2(Dmm) 

where Dmm is the grain-size diameter in mm, or, alternatively 
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  Dmm = 2-� .  

Folk and Ward (1957) (FW) grain size statistics are calculated as:   

MeanFW  = (� 16 + � 50 + � 84)/3 

MedianFW  = � 50 

SortingFW  = (� 16 + � 84)/4 + (� 95 + � 05)/6.6 

SkewnessFW  = (� 16 + � 84 – 2*� 50)/2*( � 84 – � 16) + (� 05 + � 95 + 2*� 50)/2*(� 95 – � 05) 

KurtosisFW  = (� 95 – � 05)/2.44*(� 75 – � 25) 

where � ## represents the grain size in phi units at the ## percentile of the cumulative 

distribution (Menking et al., 1993).  Results from the USGS grain-size analysis are 

supplied in Appendix B-1.  Statistics and moments were recalculated using GRADISTAT 

(Blott and Pye, 2001) for quality assurance and are included in Appendix B (B-2, B-3).   

5.2.3.  Sediment classes from physical samples 

Two approaches were used in order to have comparable data from physical 

samples and images.  First, sediment grain size distribution data from physical samples 

were reduced to percentage gravel, sand, silt, clay, and then to sediment class names 

according to Folk (1954, 1974) and Shepard (1954), using the program SEDCLASS 

(Poppe et al., 2003).   

5.2.4.  Sediment classes from seafloor images 

Initially, images were described using a sediment class name like those from the 

Folk’s system for mud, sand, and gravel, or Shepard system for sand, silt, and clay, but 

modified for mud, sand, and gravel, as shown in Poppe et al. (2003).  Descriptive class 

names produced from the images also used modifiers for shell content, so that 
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descriptions could accommodate all the combinations of mud, sand, and gravel plus shell.  

Class names were applied based on visual interpretation without specifically measuring 

any grains or coverage areas in the images.  The class names were intended to represent 

the proportions of the primary component grain sizes that were visible.  For instance, 

sediments in images were classed as sandy gravel when gravels comprised > 50 % 

(coverage area) and sand comprised 25 % to 49 % of the sediments.  The images were 

analyzed in random order to prevent bias from sequential images that might be similar 

because of collection order.   

5.2.5.  Sediment grain-size distributions from images 

Because the class names conveyed a relatively crude level of detail, (for instance, 

sandy gravel encompasses a large range of combinations of sand and gravel), another 

methodology was applied where percent coverage area was estimated for each visible 

grain-size class.  During analysis of images for estimation of coverage by sediment grain 

size classes, lines with lengths corresponding to divisions of the Wentworth (1922) grain 

size scale were displayed on a reference image that was simultaneously displayed (Figure 

5.2).   
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Figure 5.2.  Wentworth (1922) size-class scales for grain-size class divisions visible 
in seafloor video images displayed during analysis for estimating grain-size 
distribution percent coverage area from images.   

 

Selected grains in the image were measured using a measurement tool calibrated 

to a known distance, providing an object of known size to gauge others against.  Having a 

measured object in the image facilitated estimation of coverage by size class by allowing 

visual discrimination of features with respect to an object known to be in a particular size 
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class.  Scales representing bounds for the following grain-size classes were used to gauge 

sizes of grains and features:     

BOULDER  

25.6  cm  = -8 Phi = Boulder size class lower bound 

GRAVEL 

6.40 cm  = -6 Phi   Cobble size class lower bound 

1.60 cm  = -4 Phi   Large pebble size class lower bound 

0.40 cm  = -2 Phi = Small pebble size class lower bound 

0.20 cm  = -1 Phi = Granule size class lower bound. 

5.2.6.  Gravel fraction sediment grain size distributions from physical samples 

Because grains in the gravel-fraction size-class were discernible in the images, but 

gravel fraction (<-1 phi, > 2 mm) had not been separated by USGS, additional processing 

of the sediments was required.  Sediments retained on a -1 phi sieve from the USGS 

analysis were dried and sieved through a series of screens at 0.5-phi intervals (-1.5 phi to 

-6 phi).  Within each size fraction, biogenic sediments (shells) were separated from 

lithogenic grains (rocks) and each group was weighed.  Any sediments passing through 

the series of sieves and retained by the collection pan were also separated into shell and 

rock groups and weighed.  The reason for separating shell from rock was that shell 

material could generally be clearly seen in the images.  Even very small (1 mm - 2 mm) 

shell hash and fragments were often apparent.  Shell hash (diameter of 1 mm or less) and 

larger shell-fragments typically were much easier to discern than lithogenic grains from 

the same size classes (granule or small pebble) because of their white color and contrast 

with background material.  Shell is considered an important attribute to benthic habitat, 
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and a significant source of acoustic backscatter, and with potentially different acoustic 

scattering-effects than rock because of geometrical and mass-density differences.   

Shells and rocks in this study area had quite different densities (mass per unit 

volume).  Shells were less dense, but often had large surface areas.  Therefore, percentage 

weight might not be equivalent to percentage coverage area when distributions from 

samples and images are compared, but are expected to be proportional.  Use of either 

percent weight data or percent coverage data should enable discrimination between 

facies.   
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5.3.  Results and Discussion 

5.3.1.  Sediment grain-size distributions from physical samples 

Data tables and histograms for physical sample (grab and core) grain-size 

distributions for each sample are provided in Appendix B (B-4).  Sampled sediment grain 

sizes ranged from almost 100 % sand to 100 % gravel, contained very little mud, and no 

sample with more than 7 % combined silt plus clay (Figure 5.3 and Table 5.5).   

 

 

Figure 5.3.  Ternary diagram showing the percentages of gravel, sand, and 
mud for lower Piscataqua River sediments collected 4-5 September, 2002 
using a grab sampler or corer. 

 

Median grain sizes for sediment samples based on the Folk and Ward (1957) method 

ranged from 2.46 phi to -1.12 phi (0.18 mm to 2.17 mm), or fine sand to granule (Table 

5.5).   
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Table 5.5.  Grain-size statistics from lower Piscataqua River sediment 
samples, using Folk and Ward (1957) (FW) method.   

StationID 

FW 
Mean 
(� ) 

FW 
Median 

(� ) 

FW 
Sorting 

(� ) 

FW 
Skewness 

(� ) 

FW 
Kurtosis 

(� ) 

FW 
Mean 
(mm) 

FW 
Median 
(mm) 

01_2 2.52 2.46 0.33 -0.16 0.79 0.17 0.18 
01_4 1.99 1.82 0.94 -0.48 2.87 0.25 0.28 
01_5 -1.04 0.01 1.43 0.96 0.50 2.06 0.99 
01_7 -1.09 -0.27 1.22 0.96 9.37 2.13 1.21 
02_1 1.99 1.11 1.52 -0.63 0.53 0.25 0.46 
02_2 2.12 2.12 0.33 0.07 1.60 0.23 0.23 
02_7 -1.12 -1.12 0.06 0.47 0.38 2.17 2.17 
02_10 -1.03 -0.06 1.89 0.95 1.03 2.04 1.04 
03_1 -1.01 0.07 1.52 0.95 0.55 2.01 0.95 
03_2 -1.12 -1.12 0.06 0.47 0.38 2.17 2.17 
03_10 -1.07 -0.09 1.32 0.96 0.52 2.10 1.06 
04_1 1.16 1.11 0.78 -0.28 2.26 0.45 0.46 
04_2 1.24 1.28 0.35 0.07 1.32 0.42 0.41 
04_3 1.46 1.48 0.82 -0.14 2.24 0.36 0.36 
04_5 1.22 1.11 0.75 -0.41 2.39 0.43 0.46 
04.1_2 -1.08 -0.47 0.88 0.94 0.87 2.11 1.39 
04.1_3 2.26 1.39 1.75 -0.53 0.72 0.21 0.38 
04.1_4 -1.11 -1.11 0.52 0.50 9.01 2.16 2.16 
04.1_5 -1.05 -0.12 1.28 0.95 0.51 2.07 1.09 
05_3 -1.12 -1.12 0.06 0.47 0.38 2.17 2.17 
05_8 -1.08 -0.25 1.18 0.96 0.82 2.11 1.19 
05_9 -1.05 -0.14 1.36 0.95 0.79 2.07 1.10 
06_1 2.26 2.19 1.03 -0.32 2.33 0.21 0.22 
06_2 -1.12 -1.12 0.40 0.50 7.32 2.17 2.17 
06_3 -1.12 -1.12 0.06 0.47 0.38 2.17 2.17 
06_4 -1.05 -0.29 1.07 0.94 0.5 2.07 1.22 
06_5 -1.07 -0.30 1.08 0.95 0.59 2.10 1.23 
06_8 0.41 0.35 1.23 0.03 0.48 0.75 0.78 
07_3 1.10 0.66 1.32 -0.37 0.49 0.47 0.63 
07_5 -1.07 0.01 1.46 0.96 0.54 2.10 0.99 
07_9 -1.11 -1.11 0.60 0.50 10.5 2.16 2.16 
07_11 1.61 1.08 1.69 -0.29 0.56 0.33 0.47 

 



 115 

Rocks and boulders existed in the study area, but were not directly sampled by the 

grab or corer.  However, the presence of rocks and boulders were inferred if the grab 

sampler was repeatedly recovered with no sample, or if rocks or boulders were observed 

in video imagery (Table 5.6).   

Table 5.6.  Gravel, sand, and mud percent weight data (used for 
constructing ternary diagram) from analysis of sediment grab samples. A 
* indicates that rocks or boulders were observed in imagery. 

Station_ID Gravel Sand Mud Rock/Bldr 
01_2 0.45 98.12 1.43  
01_4 14.95 81.86 3.19  
01_5 60.44 37.11 2.45  
01_7 80.08 17.72 2.20  
02_1 25.36 72.39 2.25  
02_2 1.08 96.23 2.69  
02_7 98.93 0.87 0.20  
02_10 57.49 36.72 5.79  
03_1 51.70 44.69 3.61  
03_2 98.60 1.02 0.38  
03_7 . . .  
03_9 . . . 100 * 
03_10 68.48 29.49 2.03  
04_1 10.70 88.30 1.00  
04_2 2.77 96.57 0.65  
04_3 6.26 91.76 1.98  
04_5 10.61 88.16 1.23  
04.1_2 72.07 25.87 2.06  
04.1_3 24.63 71.61 3.76  
04.1_4 89.07 9.33 1.60  
04.1_5 61.77 36.92 1.30  
05_1 . . . 100 * 
05_2 . . . 100 * 
05_3 97.05 2.78 0.17  
05_5 . . . 100 * 
05_7 . . . 100 * 
05_8 74.09 24.62 1.29  
05_9 61.15 37.37 1.48  
05_10 . . . 100 * 
06_1 10.32 87.09 2.59  
06_2 94.18 5.51 0.31  
06_3 98.35 1.51 0.14  
06_4 61.55 37.49 0.96  
06_5 69.09 30.19 0.72  
06_8 47.77 50.46 1.78  
07_3 37.48 60.00 2.52  
07_5 68.05 31.01 0.94  
07_6 . . . 100 * 
07_9 87.91 11.97 0.13  
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The spatial distribution of the sediment grain-size distributions generally 

corresponded with expected size classes based on morphological regions evident in the 

multibeam bathmetry (Figure 5.4) and the sediment map of Ward (1995).   

 

Figure 5.4.  Sediment grain-size statistics from analysis of grab samples:  median 
grain size, sorting, and skewness, according to Folk and Ward (1957) (FW) method.  
In the legend, grsz stands for grain size.  
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5.3.2.  Sediment classes from physical samples  

Folk (1954, 1974) and Shepard (1954) sediment class names were generated, 

using SEDCLASS (Blott and Pye, 2001), from sediment-sample data reduced to 

percentages of mass for gravel, sand, silt, and clay size fractions (Table 5.7).   

Table 5.7.  Folk (1954, 1974) and Shepard (1954) sediment class names from 
percent-mass sediment sample data.   

Station

_ID 

Gravel 

% 

Sand 

% 

Silt 

% 

Clay 

% 

FOLK_CLASS SHEPARD_CLASS 

01_2 0.45 98.12 0.8 0.64 SLIGHTLY 
GRAVELLY SAND SAND 

01_4 14.95 81.86 1.93 1.26 GRAVELLY SAND GRAVELLY 
01_5 60.44 37.11 1.6 0.85 SANDY GRAVEL GRAVEL 
01_7 80.08 17.72 1.45 0.75 GRAVEL GRAVEL 
02_1 25.36 72.39 1.31 0.94 GRAVELLY SAND GRAVELLY 

02_2 1.08 96.23 1.6 1.09 SLIGHTLY 
GRAVELLY SAND SAND 

02_7 98.93 0.87 0.17 0.04 GRAVEL GRAVEL 

02_10 57.49 36.72 3.79 2.01 MUDDY SANDY 
GRAVEL 

GRAVEL 

03_1 51.7 44.69 2.31 1.29 SANDY GRAVEL GRAVEL 
03_2 98.6 1.02 0.33 0.04 GRAVEL GRAVEL 
03_9 . . . .   
03_10 68.48 29.49 1.17 0.86 SANDY GRAVEL GRAVEL 
04.1_2 72.07 25.87 1.37 0.69 SANDY GRAVEL GRAVEL 
04.1_3 24.63 71.61 2.25 1.51 GRAVELLY SAND GRAVELLY 
04.1_4 89.07 9.33 1.32 0.28 GRAVEL GRAVEL 
04.1_5 61.77 36.92 0.83 0.47 SANDY GRAVEL GRAVEL 
04_1 10.7 88.3 0.63 0.37 GRAVELLY SAND GRAVELLY 

04_2 2.77 96.57 0.47 0.18 SLIGHTLY 
GRAVELLY SAND SAND 

04_3 6.26 91.76 1.16 0.82 GRAVELLY SAND SAND 
04_5 10.61 88.16 0.74 0.49 GRAVELLY SAND GRAVELLY 
05_1 . . . .   
05_2 . . . .   
05_3 97.05 2.78 0.14 0.03 GRAVEL GRAVEL 
05_5 . . . .   
05_7 . . . .   
05_8 74.09 24.62 0.84 0.45 SANDY GRAVEL GRAVEL 
05_9 61.15 37.37 1.05 0.43 SANDY GRAVEL GRAVEL 
05_10 . . . .   
06_1 10.32 87.09 1.48 1.11 GRAVELLY SAND GRAVELLY 
06_2 94.18 5.51 0.23 0.08 GRAVEL GRAVEL 
06_3 98.35 1.51 0.12 0.02 GRAVEL GRAVEL 
06_4 61.55 37.49 0.69 0.27 SANDY GRAVEL GRAVEL 
06_5 69.09 30.19 0.46 0.26 SANDY GRAVEL GRAVEL 
06_8 47.77 50.46 1.08 0.7 SANDY GRAVEL GRAVELLY 
07_3 37.48 60 1.49 1.03 SANDY GRAVEL GRAVELLY 
07_5 68.05 31.01 0.59 0.4 SANDY GRAVEL GRAVEL 
07_6 . . . .   
07_9 87.91 11.97 0.08 0.05 GRAVEL GRAVEL 
07_11 27.37 68.5 2.6 1.53 GRAVELLY SAND GRAVELLY 
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5.3.3.  Sediment classes from seafloor images  

Folk (1974) grain size classes estimated from the images are reported in Table 

5.8.  Rock was also included as a class.  Shells were only considered in terms of their size 

class for this dataset.  Sand, sandy gravel, gravelly sand, gravel and rock were identified 

from the images.  In addition, a simplified class name was developed by removing 

modifiers from Folk (1974) class names.  For example, sandy gravel was simplified to 

gravel.  Hence, three crude facies classes were applied to the image classification;  sand, 

gravel, and rock.  Images used to estimate sediment grain sizes are provided in Appendix 

B (B-5). 

 



 119 

Table 5.8.  Folk (1974) and simplified (sand, gravel, rock) 
sediment classes  estimated from visual interpretation of seafloor 
video images from the lower Piscataqua River.  S=sand, G=gravel, 
R=rock, GS=gravelly sand, SG= sandy gravel.   

StationID Visually-estimated 
Folk Class 

Visually-estimated 
Folk Class Code 

Visually-estimated 
Simplified (MSGR) 
Class Code 

01_2 Sandy Gravel SG G 
01_4 Sand S S 
01_5 Sand S S 
01_7 Gravel G G 
02_1 Gravelly Sand GS S 
02_2 Sand S S 
02_7 Gravel G G 
02_10 Gravel G G 
03_1 Gravel G G 
03_2 Sandy Gravel SG G 
03_7 Sandy Gravel SG G 
03_9 Rock R R 
03_10 Gravel G G 
04_1 Sand S S 
04_2 Gravelly Sand GS S 
04_3 Sand S S 
04_5 Gravelly Sand GS S 
04.1_2 Gravel G G 
04.1_3 Sand S S 
04.1_4 Gravel G G 
04.1_5 Sandy Gravel SG G 
05_1 Rock R R 
05_2 Rock R R 
05_3 Sandy Gravel SG G 
05_5 Rock R R 
05_7 Gravel G G 
05_7 Rock R R 
05_7 Gravel G G 
05_7 Rock R R 
05_8 Gravel G G 
05_9 Gravel G G 
05_10 Gravel G G 
06_1 Gravelly Sand GS S 
06_2 Gravel G G 
06_3 Sandy Gravel SG G 
06_4 Sandy Gravel SG G 
06_5 Gravel G G 
06_8 Sandy Gravel SG G 
07_3 Gravel G G 
07_5 Sandy Gravel SG G 
07_6 Gravelly Sand GS S 
07_9 Gravelly Sand GS S 
07_11 Gravelly Sand GS S 
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5.3.4.  Comparison of sediment classes from physical samples and images 

Comparisons of sediment classes estimated from visual analysis and sample data 

are shown in Table 5.9.   

Table 5.9.  Comparison of sediment classes estimated from images and physical-samples 
(+ indicates that the classes were identified as the same; - indicates that classes were 
identified as different; “.” indicates that no comparison was made).   

N StationID Image 
Image 
Folk 
Class 

Sample 
Folk 
Class 

Image:Sample 
Folk Class 
Comparison 

Image  
Simplified 
Class 

Sample 
Simplifie
d Class 

Image:Sam
ple 
Simplified 
Class 
Comparison 

1 01_2 00_1-2 SG GS 0 G S 0 
2 01_4 01_1-4 S GS 0 S S 1 
3 01_5 02_1-5 S SG 0 S G 0 
4 01_7 42_1-7 G G 1 G G 1 
5 02_1 03_2-1 GS GS 1 S S 1 
6 02_2 14_2-2 S GS 0 S S 1 
7 02_7 50_2-7 G G 1 G G 1 
8 02_10 37_2-10 G MSG 0 G G 1 
9 03_1 04_3-1 G SG 0 G G 1 
10 03_2 17_3-2 SG G 0 G G 1 
11 03_7 36_3-7 SG  . G  . 
12 03_9 45_3-9 R  . R  . 
13 03_10 40_3-10 G SG 0 G G 1 
14 04_1 06_4-1b S GS 0 S S 1 
15 04_2 24_4-2 GS GS 1 S S 1 
16 04_3 44_4-3 S GS 0 S S 1 
17 04_5 35_4-5 GS GS 1 S S 1 
18 04.1_2 23_4.1-2 G SG 0 G G 1 
19 04.1_3 26_4.1-3 S GS 0 S S 1 
20 04.1_4 49_4.1-4 G G 1 G G 1 
21 04.1_5 53_4.1-5 SG SG 1 G G 1 
22 05_1 27_5-1 R  . R  . 
23 05_2 32_5-2 R  . R  . 
24 05_3 43_5-3 SG G 0 G G 1 
25 05_5 38_5-5 R  . R  . 
26 05_7 19_5-7 G  . G  . 
 05_7 20_5-7b R  . R  . 
 05_7 51_5-7c G  . G  . 
27 05_8 39_5-8 G SG 0 G G 1 
28 05_9 46_5-9 G SG 0 G G 1 
29 05_10 41_5-10 G  . G  . 
30 06_1 21_6-1 GS GS 1 S S 1 
31 06_2 28_6-2 G G 1 G G 1 
32 06_3 29_6-3 SG G 0 G G 1 
33 06_4 30_6-4 SG SG 1 G G 1 
34 06_5 31_6-5 G SG 0 G G 1 
35 06_8 34_6-8 SG SG 1 G G 1 
36 07_3 18_7-3 G SG 0 G G 1 
37 07_5 33_7-5 SG SG 1 G G 1 
38 07_6 48_7-6 GS  . S  . 
39 07_9 47_7-9 GS G 0 S G 0 
40 07_11 54_7-11 GS GS 1 S S 1 
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Summaries of comparison results for each classification scheme are shown in 

Tables 5.8, 5.9, and 5.10.  Poor agreement existed between Folk (1974) classes 

estimated from images and samples when modifiers for secondary components 

were used (e.g. sandy gravel), with 59 % disagreement (Table 5.10).    

 

Table 5.10.  Folk (1974) class determined 
from visual analysis of video compared to 
Folk class from sediment samples.  Listed is 
the frequency of samples for which classes 
agreed or disagreed, and percentage 
(dis)agreement is given in parentheses. 

Image:Sample 
Comparison 

Frequency 

No Data 11 
0 (Different) 19 (59 %) 
1 (Same) 13 (41 %) 

 

 

When shell fragments identified in images were grouped in the gravel size-class, 

agreement improved only slightly; half of the Folk classes from images and samples 

agreed (Table 5.11).  
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Table 5.11.  Folk (1974) class, including 
modifiers, determined from visual analysis of 
video, accounting for shell fragments in the 
gravel class, compared to simplified sediment 
class from sediment samples.  Listed is the 
frequency of samples for which classes agreed 
or disagreed, and percentage (dis)agreement is 
given in parentheses. 

Image:Sample 
Comparison 

Frequency 

No Data 11 
0 (Different) 16 (50 %) 
1 (Same) 16 (50 %) 

 

Simplifying sediment classes by removing modifiers for secondary components resulted 

in 91 % agreement between classifications from images and samples (Table 5.12).  

Hence, when only crude facies classes (such as mud, sand, gravel, and rock) were used, 

visual interpretation matched results of sediment sample analysis in nearly all cases.   

 

Table 5.12.  Simplified-class determined from 
visual analysis of video compared to simplified 
sediment class from sediment samples.  Listed is 
the frequency of samples for which classes 
agreed or disagreed, and percentage 
(dis)agreement is given in parentheses. 

Image:Sample  
Simplified-Class 
Comparison 

Frequency 

No Data 11 
0 (Different)   3 (  9 %) 
1 (Same) 29 (91 %) 
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A graphical summary of comparisons between sediment classes made from physical 

sample data and images is shown in Figure 5.5. 

 

Figure 5.5. Summary of comparisons of sediment classifications made using 
physical sample data and images.   “Folk” is from the classification to Folk class 
with modifiers, “Folk with Sh_as_Gr” is the classification made where shell hash 
was considered to be gravel-size, and Simple (MSGR) is the classification to only 
primary components (mud, sand, gravel, rock).  

 

Better agreement was expected between the classification results from images and 

samples.  It was expected that sandy gravels and gravelly sands would be identified in 

images with higher rates of accuracy.  The low rate of agreement (50 %) could be 

explained by several possibilities, including actual differences because of local spatial 

variability (images and samples were not necessarily from the exact same location), poor 

visual judgment or visual bias, or sediments with close to 50 % sand and 50 % gravel 

would appear as either sandy gravel or gravelly sand, depending on what was exposed at 

the interface.  Sediments were visually identified in several cases as gravel when analyses 
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determined that they were sandy gravel, and sand was not evident in the image either 

because of sparse or low areal-coverage or because of poor image resolution.   

5.3.5.  Sediment grain-size distributions from images 

Sediment grain-size classes with ranges that spanned one to two phi units were 

used to estimate sediment grain-size coverages from images (Table 5.13).  Lithogenic 

(rock) and biogenic (shell) components were separated for gravel size classes.  It was 

determined that the recombined size classes were visually distinguishable in seafloor 

video images, either by measuring features in images or visually estimating sizes of 

grains, or by color and texture.   

Table 5.13.  Sediment grain-size classes used for analysis of seafloor video images and 
for comparison with recombined sediment grain size distribution data.  For the sediment 
class name codes, Rk = rock, Bldr = boulder, G = gravel, S = sand, Lith = lithogenic, Sh 
= shell (biogenic), cobb = cobble, peb = pebble, lg = large, sm = small, grain = granule.   

Recombined Size 
Classes 

Recombined 
Sediment Class 
Name Codes 

Min. Size 
(Phi) 

Max. Size 
(Phi) 

Min. Size 
(mm) 

Max. Size 
(mm) 

Rk.Bldr Rk.Bldr NA -8.0 256 NA 

-8.0 to -6.0 �  (lith) G_Lith_cobb -8.0 -6.0 64 256 

-5.5 to -4.0 �  (lith) G_Lith_peb_lg -6.0 -4.0 16 64 

-3.5 to -2.0 �  (lith) G_Lith_peb_sm -4.0 -2.0 4 16 

-2.0 to -1.0 �  (lith) G_Lith_grain -2.0 -1.0 2 4 

-8.0 to -6.0 �  (shell) G_Sh_cobb -8.0 -6.0 64 256 

-5.5 to -4.0 �  (shell) G_Sh_peb_lg -6.0 -4.0 16 64 

-3.5 to -2.0 �  (shell) G_Sh_peb_sm -4.0 -2.0 4 16 

-2.0 to -1.0 �  (shell) G_Sh_grain -2.0 -1.0 2 4 

-0.75 to 1.0 �  S_coarse -1.0 1.0 0.5 2 

1.25 to 4.0 �  S_fine 1.0 4.0 0.0625 0.5 

> 4.25 �  Mud 4.0 14.0 0.00006 0.0625 
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Coverage areas estimated from video images for each sediment grain size class 

are shown in Table 5.14.  Coverages of lithogenic (“lith”) and biogenic (“sh” for shell) 

materials in the gravel size classes were separately estimated.  Rocks or boulders were 

present in 6 of the 40 images.  Mud could not be identified in any images.  Previously, 

analysis of sediment samples did not separate the gravel fractions, but it is clear from the 

data in Table 5.14 that substantial amounts of gravel in different gravel size classes 

(cobble, pebble, and granule) existed in the study area.   

Lithogenic cobbles were rare, but when present they occupied from 1 % to 31 % 

of the coverage area (Table 5.14).  Large and small lithogenic pebbles were common and 

occupied substantial coverage areas.  Lithogenic granules were sometimes found to cover 

1 % to 50 % of the area, but often could not be distinguished.  Gravel-sized shell material 

was commonly present, and was found in all but one image.  Cobble-sized shell valves 

were occasionally present, and covered from 1 % to 5 % of the area.  Small and large 

pebbles and granule-size shell material was common and covered from less than 1 % to 

50 % of the coverage area when present (Table 5.14).   

Sand was sometimes distinguishable by color or texture patterns, but not 

necessarily as grains.  Mud was not identified in any images.  In seafloor video from 

other study areas mud has been identifiable (by color and texture).  At the sites sampled 

within this study area, grab sample data showed that mud was rare and present in small 

quantities.   
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Table 5.14.  Percentage of coverage area for each sediment size class estimated from 
seafloor video images acquired at sediment sample sites.  The coverage area percentages 
sum to 100 % except in cases where the lithology was not determinable in part of the 
image.  (“.” = indeterminate).   G = gravel, lith = lithogenic, sh = shell, Rk = rock, Bldr = 
boulder, cobb = cobble, peb_lg = large pebble, peb_sm = small pebble, grain = granule.   

Label Rk/ 
Bldr 

G_Lith_
cobb 

G_lith_ 
peb_lg 

G_lith_ 
peb_sm 

G_lith_ 
grain 

G_sh_ 
cobb 

G_sh_ 
peb_lg 

G_sh_ 
peb_sm 

G_sh_ 
grain 

Sand Mud 

 01_02 0 0 10 10 . 0 1 1 1 77 . 
 01_04 0 0 0 0.1 . 0 1 0.1 0.1 98.7 . 
 01_05 0 0 5 1 . 0 0 5 5 84 . 
 01_07 0 0 80 10 . 5 1 1 0.1 0 . 
 02_01 0 0 0 5 . 0 0 5 1 89 . 
 02_02 0 0 0 1 50 0 1 1 10 37 . 
 02_07 0 0 75 9 . 0 5 10 1 . . 
 02_10 0 0 10 75 . 0 1 10 3 1 . 
 03_01 0 0 10 80 . 0 0 1 9 0 . 
 03_02 0 0 31 31 . 0 2 5 31 . . 
 03_07 0 1 1 60 . 0 1 1 1 35 . 
 03_09 80 0 5 0 . 0 10 0.1 0.1 . . 
 03_10 0 0 75 20 . 0 0 1 1 3 . 
04_01 0 0 0 0.1 . 0 0 0.1 40 59.8 . 
04_02 0 0 0 1 10 2 0 10 25 52 . 
04_03 0 0 0 0 1 0 0 1 10 88 . 
04_05 0 0 0 0 40 0 0 1 10 49 . 
04.1_02 0 0 72 25 . 0 1 1 1 . . 
04.1_03 0 0 0 0.1 . 0 1 1 1 96.9 . 
04.1_04 0 0 88 10 . 0 1 1 . . . 
04.1_05 0 0 25 25 10 0 2 10 10 20 . 
05_01 75 . . . . . . . . . . 
05_02 85 5 0 0 . 0 0 1 9 0 . 
05_03 0 0 50 1 . 0 20 1 1 25 . 
05_05 99 0 0 0 . 0 0 0 1 0 . 
05_07 100 0 0 0 . 0 0 0 0 0 . 
05_08 0 0 90 1 . 0 1 2 3 3 . 
05_09 . 0 30 30 . 0 1 30 . . . 
05_10 50 10 10 10 1 0 5 3 3 0 . 
06_01 0 0 0 1 . 1 25 10 10 53 . 
06_02 0 31 33 33 . 0 0 1 1 1 . 
06_03 0 0 50 38.9 . 0 0 1 0.1 10 . 
06_04 0 . 50 25 . 0 0 1 1 10 . 
06_05 0 0 49.5 49.5 . 0 0 0 1 0 . 
06_08 0 0 60 20 . 0 10 1 1 5 . 
07_03 0 0 10 25 . 0 1 10 50 4 . 
07_05 0 0 1 48.9 . 0 1 0.1 0.1 48.9 . 
07_06 0 0 5 10 . 0 5 1 1 88 . 
07_09 0 0 10 10 . 0 0 1 0 79 . 
07_11 0 0 1 30 1 0 1 1 1 65 . 

 

Figures of the grain size coverage data shown in Table 5.14 are provided in 

Appendix B (B-6). 
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5.3.6.  Gravel-fraction sediment grain-size distributions from physical samples  

The initial grain size analysis of sediment samples did not separate the gravel size 

class fraction (grains with diameters > 2mm, or < -1 � ).  Because many of the samples 

from this study area contained substantial proportions of gravel-sized sediment, the grain-

size distributions often contained a well-separated sand fraction and a large single value 

representing the gravel fraction, such as in the example from sample 200209_02_10 

(Figure 5.6).   

 

 

Figure 5.6.  Example of grain-size distribution from original analysis of sediment 
samples.  Percentage of mass is plotted.  Sand is shown as gold, gravel (retained on a -1 
phi sieve), labeled as G, is shown as black.   

 

Most of what could be visually identified from seafloor video images was gravel-

sized sediment.  Therefore, the gravel fractions from the samples were separated by dry 

sieving.  An example of the result (for the same sample as in Figure 5.6) is shown in 

Figure 5.7.   
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Figure 5.7.  Sediment distribution plot after including the separated gravel fraction.  Sand 
is shown as gold, gravel is shown as black.   

 

In addition to separating the gravel fraction, the lithogenic and shell materials were 

separated for each of the gravel size class intervals (-1 to – 6 � ), producing a distribution 

such as that shown in Figure 5.8.   

 

Figure 5.8.  Histogram of sediment grain-size data showing percent weight data for 
separated gravel size classes for lithogenic (black) and shell (gray) materials.  Sand and 
mud size-class data are also shown (gold).   
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Because most of those size class intervals could not be distinguished visually, the size 

classes were recombined into classes with the 1 to 2 phi intervals shown in Table 5.13.  

That resulted in size class distributions like the one shown in Figure 5.9.    

 

Figure 5.9.  Sediment grain size grab sample data histogram using the recombined 
size classes that could be distinguished visually and were also used for grain-size 
distribution data from images.   

 

The sediment grab-sample grain-size data resulting from the recombined scheme are 

summarized in Table 5.15. 
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Table 5.15.  Percentage of weight (mass) for each recombined sediment size class 
estimated from grab, corer, or diver core sample data.  “.” = no data,  G = gravel, lith = 
lithogenic, sh = shell, Rk = rock, Bldr = boulder, cobb = cobble, peb_lg = large pebble, 
peb_sm = small pebble, grain = granule. 

Station 

Rock 
Bldr 
Inferred 

-8.0 to 
-6.0 �   
G lith 
Cobb 

-5.5 to 
-4.0 �   
G lith 
Peb_lg 

-3.5 to -
2.0 �   
G lith 
Peb_sm 

-2 to -
1.0 �   
G lith 
Grain 

-8.0 to 
-6.0 �   
G sh 
Cobb 

-5.5 to 
-4.0 �   
G sh 
Peb_lg 

-3.5 to -
2.0 �   
G sh 
Peb_sm 

-2 to -
1.0 �   
G sh 
Grain 

-.75 to 
4.0 �   
 
Sand 

> 4 �   
 
 
Mud 

01_2 0 0 0 0 0 0 0 0.23 0.23 98.12 1.42 
01_4 0 0 0 5.44 0.50 0 0 6.23 2.77 81.85 3.22 
01_5 0 0 57.76 0 0.13 0 0 1.36 1.29 37.09 2.44 
01_7 0 0 59.57 14.19 1.11 0 0 2.50 2.70 17.71 2.21 
02_1 0 0 0 19.57 2.86 0 0 1.08 1.82 72.37 2.25 
02_2 0 0 0 0.16 0.27 0 0 1.45 1.12 96.22 2.75 
02_7 0 0 96.67 0.91 0.07 0 0 0.73 0.60 1.75 0.43 
02_10 0 0 26.09 9.85 1.41 0 0 29.40 7.61 56.73 5.79 
03_1 0 0 13.26 23.71 2.50 0 0 6.54 5.59 44.70 3.62 
03_2 0 0 95.99 0 0 0 0 1.57 1.02 1.00 0.36 
03_7 . . . . . . . . . . . 
03_9 100 . . . . . . . . . . 
03_10 0 0 39.18 22.71 1.61 0 0 2.07 3.27 28.73 2.00 
04_1 0 0 0 0 1.29 0 0 2.51 6.89 88.31 1.01 
04_2 0 0 0 0.12 0.13 0 0 0.30 2.15 96.58 0.82 
04_3 0 0 0 0.19 0.19 0 0 0.87 4.87 91.78 1.98 
04_5 0 0 0 0.21 0.42 0 0 1.98 7.98 88.16 1.24 
04.1_2 0 0 0 56.23 11.24 0 0 1.44 3.26 25.87 2.06 
04.1_3 0 0 7.11 9.58 2.81 0 0 0 0.52 71.62 3.70 
04.1_4 0 0 48.14 35.60 1.29 0 0 1.22 2.66 9.36 1.60 
04.1_5 0 0 32.07 24.43 1.22 0 0 2.13 1.97 36.93 2.00 
05_1 100 . . . . . . . . . . 
05_2 100 . . . . . . . . . . 
05_3 0 0 93.82 2.79 0.10 0 0 0.11 0.20 2.66 0.25 
05_5 100 . . . . . . . . . . 
05_7 100 . . . . . . . . . . 
05_8 0 0 43.58 25.24 2.48 0 0 1.53 1.63 24.63 1.27 
05_9 0 0 18.93 25.83 11.25 0 0 2.42 2.40 37.35 1.47 
05_10 100 . . . . . . . . . . 
06_1 0 0 0 4.03 0.24 0 0 3.33 2.68 81.86 2.58 
06_2 0 0 95.68 0 0.14 0 0 0.21 0.52 5.53 0.32 
06_3 0 0 83.03 14.04 1.32 0 0 0.19 0.14 1.53 0.14 
06_4 0 0 49.30 7.58 1.92 0 0 0.15 0.27 37.48 0.95 
06_5 0 0 52.43 12.02 3.11 0 0 0.39 1.30 30.21 0.89 
06_8 0 0 22.86 18.06 4.54 0 0 0.49 1.92 50.44 2.40 
07_3 0 0 13.64 8.36 4.64 0 2.75 2.66 5.39 60 2.53 
07_5 0 0 49.04 17.61 0.75 0 0 0.28 0.47 31.00 1.20 
07_6 100 . . . . . . . . . . 
07_9 0 0 78.57 9.41 0 0 0 0 0 11.96 0.08 
07_11 0 0 0 15.79 10.13 0 0 0.89 0.61 68.49 4.13 
 

 

Using the recombined size class scheme, results from analysis of sediment samples could 

be compared to results from analysis of images.  Side-by-side plots comparing the 
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sediment data from samples to images in Table 5.14 and Table 5.15 are provided for all 

samples in Appendix B (B-6).  

5.3.7.  Comparison of sediment grain size distributions from physical samples and 

images 

Sediment size-class distributions estimated from analysis of seafloor imagery 

resembled recombined distributions measured from the gravel-separated grab samples.  It 

is clear from the graphs that agreement between sediment size class distributions 

determined from both methods is good, although not for all samples.  Note that grab 

sample data represent percent mass and image data represent percent coverage area and, 

therefore, identical numbers should not be expected.  Also note that analysis of video 

images for sediment distribution was done independent of, and without reliance on, 

sediment grab sample results.  Figure 5.10 shows examples for one sample site.   
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Figure 5.10.  Example of comparison between sediment grain size distribution  
from grab sample to sediment distribution estimated using a video image from 
station 3-10.  Numeric labels represent percentages:  percentage of mass for 
sample, and percent cover for image.  NaN represents no data.  The categories 
represent:  (RkBld) Rock or Boulder, (GLCob) lithogenic gravel in cobble range, 
(GLPlg) lithogenic gravel in large pebble range, (GLPsm) lithogenic gravel in 
small pebble range, (GLgra) lithogenic gravel in granule range, (GSCob) gravel-
sized biogenic shell cobble range, (GLPlg) gravel-sized biogenic shell in large 
pebble range, (GLPsm) gravel-sized biogenic shell in small pebble range, (GLgra) 
gravel-sized biogenic shell in granule range, (Sand) all sediments in the sand size 
classes, (Mud) all sediments in the silt and clay size classes. 

 

Despite that apparent good agreement existed between data from physical samples 

and images based on visual inspection of the graphs, it is desirable to place a quantitative 

descriptor on how well sediment size class distributions estimated from analysis of 

seafloor imagery resemble distributions measured from grab samples.  Use of such a 
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statistic was not intended to determine whether the estimates represented the same 

seafloor data, but rather to provide some quantitative assessment of how well the data 

from different sources agreed and how well one type of data might be expected to predict 

the other.  An insignificant value for a chi-square statistic might simply mean that the test 

did not apply.  Because the grab sample and image sample were not simultaneously 

acquired, some differences could be explained by spatial variability of properties due to 

positional differences during reoccupation of the station.  Alternatively, visual bias could 

have been the cause.  

5.3.8.  Goodness of fit, distance, similarity 

Chi-square and Kolmogorov-Smirnov (KS) goodness-of-fit tests were reviewed 

for applicability to the task.  The KS test and the chi-square test are non-parametric (Zar, 

1984).  Although it was calculated for these comparisons, the chi-square test is probably 

not appropriate for comparing these data for several reasons.  The data represent 

percentages (percent weight and percent cover).  Zar (1984) warns that chi-square 

statistic calculated from converting frequency data to percentages is not valid; however, it 

is unclear whether this applies to data that begin as percentages.  There are many 

categories with missing data or low percentages (<5 %) and, therefore, the chi-square 

statistic would be suspect in these cases.  The KS test is probably more appropriate for 

the data and also is calculated for assessing agreement.   
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5.3.9.  Distances, Similarity, and Dissimilarity measures 

5.9.1.3.  Bray-Curtis similarity and dissimilarity 

 Bray-Curtis similarity is often employed by ecologists, usually for grouping or 

ordination of biological community data.  Bray-Curtis similarity is generally considered 

equivalent to Sorensen’s index (Gallagher, 1998).  The original formulation of Bray-

Curtis similarity (BCs) (Bray and Curtis, 1957) is the form used by COMPAH96 

(Gallagher, 1998), a popular clustering package.   

BCs = 2*SUM(min(xj,xk)) / SUM (xj+xk) 

where xj is the physical-sample data-array, xk is the image data-array, i and j range from 

1:n, SUM represents summation over the length (n) of the array, and min stands for 

minimum.  

Here, the Bray-Curtis dissimilarity (BCd) is used, where  

BCd = 1 – BCs. 

Alternatively, the Bray-Curtis dissimilarity index (BCd) can be found in the form:   

BCd  = SUM(abs(xj-xk) / SUM (xj+xk) 

where abs stands for the absolute value, and multiplication by 2 is not included.   

5.9.2.3.  Euclidean distance 

The Euclidean distance (D_Eucl) between two vectors, x and y, is  

D_Eucl = [SUM(xi-yi)^2]^0.5 

where i is number of dimensions, or variables, contained by each vector.   

In matrix form, Euclidean distance between vectors X and Y is the norm of X-Y 

 D_Eucl = || X-Y || 
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which is equivalent to 

 D_Eucl = [(X-Y)^2]^0.5   

The squared Euclidean distance is  

D_Eucl2 = [X-Y]T[X-Y] 

where T indicates the transpose.  Euclidean distances are not standardized and, therefore, 

may be uninterpretable if the variables are measured in different units.  In such a case, it 

is desirable to adjust for the effects of different scales or units by standardization. 

5.9.3.3.  Mahalanobis Distance 

A related distance, the Mahalanobis Distance (D_Mahal), compensates for 

unequal variances (that can be introduced by different units) between variables, and uses 

the covariance matrix for standardization:   

D_Mahal =  [X-Y]T[C]^-1[X-Y] 

(modified from Davis, 1986) and C is the covariance matrix for X and Y.   

 There are not straightforward ways to assign probability of occurrence to 

distances or dissimilarities (such as the Euclidean, Bray-Curtis, and Mahalanobis) in 

order to assess whether the observed value exceeds some threshold for acceptance.  The 

analyst must judge how to categorize the values if a decision is to be made about whether 

the data agree or not.  Often, minimum distance criteria are applied to determine group 

membership based on a distance/dissimilarity value.  However, in this case, I am trying to 

assess agreement between data from samples and images.  It is preferred to judge against 

some standard, rather than arbitrarily deciding on a threshold value.  Therefore, two 

statistical tests are applied:  the chi-square and Kolmogorov-Smirnov goodness of fit 

tests.   
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5.9.4.3.  Chi-square statistic 

 The Chi-square test statistic is calculated as: 
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2
 

for the jth class of k classes, using image data as O (observed), sample data as E 

(expected).  If the value of E was equal to zero, then 0.5 was added.  A chi-square test 

was performed, comparing the calculated X^2 to X^2 critical for 10 degrees of freedom 

at a probability level of 0.05 (X^2crit_a:0.05,df:10 = 18.307).  A chi-square statistic 

value that exceeds critical value is considered significant at that probability level.  The 

probability level of 0.05 suggests that 1 in 20 times (5 %), a larger than the critical value 

could occur by chance.  Significance of the chi-square statistic generally suggests that the 

null hypothesis, that the two distributions are the same, can be rejected.   However, 

caution should be used in the interpretation of significance in this case because of the 

differences between the data and the questionable validity of chi-square test for these 

data.    

5.9.5.3.  Kolmogorov-Smirnov test 

 A Kolmogorov-Smirnov (KS) test for continuous data was performed as another 

way to assess agreement between the sediment distributions from the samples and the 

images.  The KS test is a non-parametric goodness-of-fit test designed specifically for 

ordered categories (Zar, 1984).  The sediment size class data are organized in ordered 

categories; therefore, the KS test seems appropriate.  The KS test statistic represents the 

maximum value of the deviation (difference) between the observed cumulative 
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distributions and the theoretical (or specified) cumulative frequency distribution (cfd) 

(Zar, 1984).  Often, the KS test is used to determine whether data are normally distributed 

(or Poisson, or logistic, etc.).  In these comparisons between image and physical sample 

data, the image data represent the observed and the sample data are used as the specified 

distribution.   

5.3.10.  Summary of Agreement Assessment 

Euclidean distance and Bray-Curtis dissimilarity between sediment sample 

distribution and image distribution vectors relate how well the data from two different 

analyses agree.  Table 5.16 contains values of Euclidean distance and Bray-Curtis 

dissimilarity for all samples with good paired data, i.e., where both grab samples and 

video image samples existed and both represented trusted data. 
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Table 5.16.  Euclidean distance (D_Eucl), Bray-Curtis dissimilarity (BCd), Chi-square 
statistic value (ChiSq) and significance for sediment distribution data vectors from 
separate analysis of grab sample and images.   

Sample_ID BC_Dissim Euclid_D ChiSq ChiSqSig KS_D KS_p KS_sig 
1_02 0.23 25.5 456.7 Sig 0.364 0.461 NS 
1_04 0.18 19.2 22.2 Sig 0.364 0.461 NS 
1_05 0.55 70.8 133.7 Sig 0.182 0.993 NS 
1_07 0.28 28.1 93.5 Sig 0.364 0.461 NS 
2_01 0.21 22.8 31.6 Sig 0.273 0.808 NS 
2_02 0.61 77.9 3356.7 Sig 0.182 0.993 NS 
2_07 . . . . . .  
2_10 0.71 89.7 503.9 Sig 0.273 0.808 NS 
3_01 0.60 72.4 188.8 Sig 0.364 0.461 NS 
3_02 0.66 78.1 2659.7 Sig 0.364 0.461 NS 
3_07 . . . . . .  
3_09 . . . . . .  
3_10 0.36 44.3 59.7 Sig 0.364 0.461 NS 
4_01 0.33 43.8 166.7 Sig 0.273 0.808 NS 
4_02 0.45 52.0 543.3 Sig 0.364 0.461 NS 
4_03 . . . . . .  
4_05 0.42 55.7 1764.9 Sig 0.182 0.993 NS 
4.1_02 0.73 83.5 10571.2 Sig 0.364 0.461 NS 
4.1_03 0.26 28.3 38.5 Sig 0.364 0.461 NS 
4.1_04 . . . . . .  
4.1_05 . . . . . .  
5_01 0.14 25.0 11.0 NS 0.091 1.000 NS 
5_02 0.15 18.2 251.1 Sig 0.273 0.808 NS 
5_03 . . . . . .  
5_05 0.01 1.4 9.0 NS 0.091 1.000 NS 
5_07 0.00 0.1 5.2 NS 0.091 1.000 NS 
5_08 0.49 56.8 99.3 Sig 0.273 0.808 NS 
5_09 . . . . . .  
5_10 0.48 53.3 801.4 Sig 0.636 0.023 Sig 
6_01 0.38 39.7 1351.8 Sig 0.273 0.808 NS 
6_02 0.66 77.5 4276.9 Sig 0.364 0.461 NS 
6_03 0.34 42.2 102.0 Sig 0.182 0.993 NS 
6_04 0.27 32.6 66.8 Sig 0.182 0.993 NS 
6_05 0.38 48.3 148.1 Sig 0.364 0.461 NS 
6_08 0.52 59.8 328.2 Sig 0.182 0.993 NS 
7_03 0.69 74.2 456.5 Sig 0.273 0.808 NS 
7_05 0.50 60.1 118.7 Sig 0.273 0.808 NS 
7_06 . . . . . .  
7_09 . . . . . .  
7_11 . . . . . .  
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The values of D_Eucl and BC suggest moderate agreement overall between 

sample and image estimates for percent weight and percent cover of sediment grain size 

classes, with a large range of distances and dissimilarities, and apparently several pairs 

with large disagreement (Figure 5.11).   

 

 

Figure 5.11.  Distributions of Euclidean distance (D_Eucl), Bray-
Curtis dissimilarity (BCd), and Chi-square statistic. 

 

D_Eucl and BCd generally related the same relative information about agreement 

between samples.  Dark bars in Figure 5.10 represent where D_Eucl > 70 %.  In most of 

these cases, there is also high BCd (> 0.55).   

Chi-square statistic values for all samples (except 3 from rock/boulder facies) 

exceeded chi-square critical value for 10 degrees of freedom (df).  Those results should 

be considered cautiously. First, it is not clear that the chi-square test is valid for these 

data.  Second, the data represent different attributes:  percent mass, and percent coverage 

area.  Standardization might be required; for example, for samples such as 05_02 that was 

inferred to have 100% rock or boulder by weight, because a sample was not recovered, 
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and 85% coverage of rock/boulder was observed in the image, the resultant chi-square 

statistic value exceeded the critical chi-square value.   

According to the KS test done using the CRAN-R statistical analysis software 

(Ihaka and Gentleman, 1996), only one station had different distributions:  Station 5_10 

(where no sample was recovered and, therefore, 100% rock/boulder inferred, but the 

image revealed rock, cobble, and large pebbles).  Thus, the chi-square test suggested that 

nearly all distributions disagreed, but the Kolmogorov-Smirnov test suggested that nearly 

all of them agreed.   

The distance/dissimilarity statistics should probably only be used to judge relative 

agreement between sample and image sediment distribution data.  What becomes very 

clear is that the chi-square statistic should not be calculated for data with cells containing 

zeros or when many cells contain low values.  For frequency data, usually a warning that 

chi-square test is suspect is issued if >20 % of the cells contain counts < 5; that occurred 

frequently with these samples.  For these data, we hope that we have Type 1 statistical 

errors (erroneously rejecting the null hypothesis).   

5.3.11.  Geographic explanation? 

Recall that the samples and images were not simultaneously acquired and not 

necessarily at exactly the same locations.  Therefore, the above results suggest a 

hypothesis that where the largest differences occurred (large D, BC, or X^2) we might 

expect to find more heterogeneous, variable spatial distributions.  Examination of the 

bathymetry or backscatter data might be able to support the expectation based on evident 

morphology and backscatter variation.  We can also test the hypothesis by examining 

video transect data.  If actual spatial heterogeneity is not the cause, then what is the 
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cause?  Perhaps there is something about the sediment sample that does not get 

discriminated by visual interpretation or perhaps the visual classification was erroneous 

because the grains were incorrectly identified by visual examination. There were eight 

samples where D > 70 % (Table 5.17).    

 

Table 5.17.  List of sampled stations where 
sediment distributions from grab sample and 
image analysis had large differences (Euclidean 
distance > 70 %).   

Sample_ID Euclid_D 
01_5 70.84 
02_10 89.69 
02_2 77.90 
03_1 72.38 
03_2 78.11 
04.1_2 83.46 
06_2 77.46 
07_3 74.17 

 

 

 Highlighting the samples where D > 70 % on the bathymetry data provides only 

some support for explaining the differences based on spatial location or proximity to 

transitions (Figure 5.12).  Approximately half of these samples were located near a strong 

morphological transition, or within a morphological region characterized by large 

roughness features.  The green circles are where better agreement existed, and red 

asterisks are where agreement was relatively poor.    
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Figure 5.12.  Locations where large Euclidean distances 
resulted between sediment distributions estimated from grab 
samples and images.   

 

Placing some of the paired sediment distributions on the map for selected samples labeled 

with relative level of agreement can help determine whether differences were related to 

geographic distributions of attributes (Figure 5.13).  Categories levels describing level of 

agreement were:  best (D<25; 0.3 < BCdis < 0.5), good (25 < D < 42; 0.51 < BCdis < 

0.55), moderate (42 < D < 55; 0.56 < BCdis < 0.66), low (56 < D < 70; 0.67 < BCdis < 

0.74), and poor agreement (D > 70; 0.75 < BCdis < 0.82) 



 143 

 

Figure 5.13.  Sample stations colored by Euclidean distance between sediment 
distributions estimated from grab samples and from images.  Examples of the 
distributions estimated and the relative quality of their agreement are shown for 
selected stations.  Sample data are in the upper plots (black) and image analysis 
data are in the lower plots (green).  

 

Categorizing relative agreement according to the ranges observed for the dissimilarity 

and distance measures seems overly strict.  If the grain-size distributions from images and 

physical samples were offset by a value in only one size-class, then the agreement could 
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be categorized as poor based on relative dissimilarity.  This categorization allows no 

flexibility in the interpretation of sediment grain size from images.  For instance, if the 

grains were judged as being large pebbles rather than small, and coarse sand was deemed 

to be granule, then agreement might be “low” or “poor” according to distance or 

dissimilarity measures.  However, most of the cases with “low” or “poor” agreement 

were considered to be reasonably good.  It can be seen in Figure 5.13 that “low” or 

“poor” agreement sometimes resulted from differences in adjacent size-class categories 

(where grain size had been estimated visually to be one class smaller or larger than what 

the sample contained).  For instance, consider distributions from 07_3:  the grab sample 

analysis distribution determined 60 % sand (by mass), and the image analysis distribution 

was 50 % in the class representing shell in the granule size class (G_Sh_grain:  2 – 4 

mm).   Perhaps what appeared to be granule-sized shell hash in the image was actually 

sand-sized material.  Perhaps sand was misidentified as shell hash in the image.  Perhaps 

local spatial variation existed and both distributions were accurate.    

 All of the sample-versus-image sediment grain size histogram plots are provided 

in Appendix B.   

 

5.4.  Conclusions 

Estimating percent coverage area for each grain size class from seafloor video 

imagery requires much more time and effort than assigning a class name by estimating an 

overall modal grain size from an image.  In addition, there is considerable uncertainty 

about whether particular patterns or colors in images represent grains of a particular size.  

Grains often cannot be easily distinguished, if at all, except for occasional large grains.  
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In most cases, grains are overlapping, therefore, even pebbles and cobbles can be difficult 

to accurately assess.   

If a crude classification is all that is required for ground truthing acoustic data, for 

verifying extrapolations of sample data, or for physical habitat characterization, then 

rapid and relatively accurate determinations of primary sediment facies can be resolved 

from moderate to good quality seafloor video images.  If more detailed grain size 

distribution data are required, it is possible to use images from underwater cameras to 

estimate grain size distributions (or facies characteristics) that have good agreement with 

sample data, as has been demonstrated by this study.  These results are beneficial because 

acquiring and processing images from shallow water is less time consuming and less 

expensive than complete grain-size analyses of sediments.  Many more images can be 

acquired and analyzed, thus increasing spatial coverage.  Also, images can reveal 

information about some facies that cannot be recovered easily or at all by many sampling 

devices.   
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6.  BENTHIC HABITAT CLASSIFICATION, 

CHARACTERIZATION, AND THE PROVISIONAL TRUTH OF 

GROUND-TRUTH 

 

6.1.  Citation 
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2005.  
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provisional truth of ground-truth. Proceedings of the International Conference on 
Underwater Acoustic Measurements:  Technologies and Results. Heraklion, Crete, 
Greece, 28 June – 1 July, 2005.  

 

6.2.  Introduction 

Acoustic remote sensing of the seafloor often involves multibeam echosounders 

that provide very high resolution bathymetric and backscatter data from acoustic ranging 

and signal strengths.  Increasingly, multibeam bathymetry and backscatter maps are being 

used as a basis for seafloor habitat maps, such as in Kostylev et al. (2001).  Sedimentary 
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facies maps have been generated from expert interpretation (Todd et al., 1999) and 

hierarchical decision tree analysis of backscatter and bathymetry data (Dartnell and 

Gardner, 2004).  Key to inferring seafloor facies and habitat characteristics from 

bathymetry and acoustic backscatter data are ground-truth sample data.   

Ground-truth data are critical to interpreting, classifying, and characterizing 

remotely sensed seafloor data.  Sample data are used to (1) validate physics-based model 

predictions, (2) build empirical models, (3) assign class names and perhaps associated 

characteristics to results of unsupervised classification, and (4) develop prototype feature 

vectors for supervised classification of remotely sensed seafloor data.  Regardless of the 

approach, similar problems will likely be encountered, and similar decisions will be 

required that are related to the so-called "ground-truth" sample data.   

This work relates a combination of methods used to segment and classify 

multibeam bathymetry and backscatter maps into apparent, "hypothetical" seafloor 

habitat types.  Derivative products of bathymetry and backscatter were used in 

combination with ground-truth data.   Physical samples and seafloor video images 

constitute the ground-truth data.  Segmentation and classification of bathymetry and 

backscatter was carried out by manual delineation, value ranges, local variance, texture 

feature analysis, and spatial covariance model parameter values.  This study demonstrates 

how classifications and predicted characteristics are dependent on the interpretation and 

spatial aspects of the ground-truth data.   
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6.3.  Data and analysis 

The study area for this work was a portion of the subtidal lower Piscataqua River 

Estuary that flows between New Hampshire and Maine, USA.  The study area 

represented a small part of the area surveyed for the Portsmouth Common Dataset 2001 

(Mayer and Baldwin, 2001).  Data used for this work were from surveys collected in 

support of the Second International Conference on High-Resolution Surveys in Shallow 

Water by Science Applications International Corporation (SAIC) in July, 2001, and by 

Simrad in June, 2001, in conjunction with University of New Hampshire Joint 

Hydrographic Center and Center for Coastal and Ocean Mapping.  The bathymetry 

dataset was from the SAIC survey that used a dual-head Reson 8125 multibeam 

echosounder (Byrne et al., 2001).  Backscatter data were from the survey by Simrad and 

UNH that used a Simrad EM3000-D multibeam echosounder.  Positioning and 

orientation for both surveys were recorded using an Applanix/TSS POS/MV 320 inertial 

motion unit.  Data were cleaned and processed according to hydrographic standards, then 

gridded with 1 m grid cell sizes (Figure 6.1).     
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Figure 6.1.  Bathymetry gridded from Reson 8125 data and acoustic backscatter mosaic 
grid from Simrad EM3000D data for part of the Piscataqua River Estuary.  In the 
backscatter mosaic (on the right), dark represents low backscatter strength, light 
represents high backscatter strength.  Coordinates are Eastings and Northings (m) from 
UTM zone 19 north.   
 

 An existing sediment distribution map (Ward, 1995) for the study area served as a 

standard for assessing the segmentation results.  Segmentation of bathymetry and 

backscatter data grids was done initially by manually delineating the maps into regions 

that appeared to be distinctive visually.  Manual delineation of seafloor morphology or 

backscatter is a simple, reliable way to impose spatial extent and coverage of distinct 

facies and habitats.  Human perception makes manual delineation quite effective in the 

case of excessively noisy data.   However, manual delineation requires much subjectivity, 

and boundaries are not often clear.  Analyst bias is a concern with manual delineation, as 

is reproducibility.  To avoid potential analyst bias, other segmentations were applied 

using techniques based on backscatter median value:  classification of local Fourier 

histogram (LFH) texture features using unsupervised (Cutter et al., 2003), and supervised 

schemes; and spatial covariance model parameters fit to variograms from bathymetry.   



 151 

 

6.4.  Results and discussion 

Regions identified by manually delineating bathymetry and backscatter maps 

based on distinctive morphologies and/or backscatter values tended to match the spatial 

delineations for primary lithologies reported by Ward (1995).   Those were:  rock, gravel, 

and sand.  The rocky regions and sandy region characterized by megaripples were easily 

identified visually in the bathymetry.  The remaining area corresponded to regions 

identified by Ward (1995) to be primarily composed of gravel.    
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Figure 6.2.  Results from segmentation of bathymetry data from manual delineation, 
classification of backscatter value statistics, LFH texture feature classification, and spatial 
covariance model parameter classification. 
 

Segmentation results from all the techniques resulted in regional groupings of 

similar morphologies or backscatter values, and all correspond to the primary facies of 

Ward (1995) to a reasonable degree based on visual comparison.  What we sought, 
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however, was a more detailed characterization, for sediment class, at least.  Although it is 

tempting to predict sediment class from a physics-based model such as Jackson et al. 

(1986), there were several reasons for avoiding that.  These include:  the operational 

frequency of the EM3000 sonar (300 kHz) that is higher than the range considered to be 

valid for the Jackson et al. (1986) model; an offset that existed between levels from each 

of the dual heads; the backscatter data were gridded and not corrected for seafloor 

geometry; and because modelled sediment properties are ideal and this study area 

contained many coarse sediment mixtures.   

A variogram from part of the backscatter dataset shows that the data were noisy, or 

highly variable, over the smallest sample interval distances (Figure 6.3).  The variogram 

 

Figure 6.3.  Data noise or high variability is suggested by this variogram 
for a subset of the backscatter data. 

 

from the backscatter data also suggests that the backscatter data are not generally useful 

for segmentation and classification techniques that rely upon quantitative descriptions of 

local spatial or statistical properties.  Also, the variogram supports the use of low-pass 
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filtered backscatter data.  Because the backscatter data were noisy and were not corrected 

for seafloor geometry, characterizations of seafloor attributes from these backscatter data 

should be limited to homogenous regions with uncomplicated geometries.   

With good quality, low noise data such as the multibeam bathymetry from this 

shallow water study area, spatial variation can be used to discriminate between some 

morphologies. Similar to the approach described by Herzfeld (1993), variograms were 

used here to segment and classify bathymetric data into the three primary facies based on 

differences in spatial covariance properties of bathymetry by facies (Figure 6.4).  

Specifically, parameters from spatial covariance models fit to empirical variogram data 

by ordinary least squares were used for segmentation of bathymetry for a portion of the 

study area.  Results of the segmentation of bathymetry using an index constructed from 

covariance model parameters are shown in Figure 6.2.    

 

Figure 6.4.  Representative variograms for bathymetry by facies, suggesting that facies 
had characteristic morphologies distinguishable by spatial properties. 
 

Samples used to construct the existing sediment map (Ward, 1995) suggested that 

within the gravelly facies, sediment grain size distributions could range from gravelly-

sand to sandy-gravel.  Manual delineations of bathymetry resulted in differences from the 

existing sediment map of Ward (1995).  These differences were due to the multibeam 

data resolution and coverage compared to the data used to construct the Ward (1995) 
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sediment map.  The new delineations were generally refinements of the Ward (1995) 

sediment map that was based on sparse samples and interpretation of limited-coverage 

sidescan sonar data.  Ground-truth data were needed to assess the accuracy of 

delineations, and seafloor video images were used for the ground truthing (Figure 6.5).  

 

Figure 6.5.  Regions from manual delineation of bathymetry relating to the three primary 
facies; rocky facies is dark, gravelly is stippled, and sandy is rippled.  Video transect data 
are coded and labelled by facies interpreted from video images.  
 

Away from boundaries between facies, video data corroborated predicted facies.  

Ground-truth video data from the delineation corresponding to sand facies sometimes 

revealed gravel facies and, hence, misclassification (Table 6.1).  Most cases where video 

indicated misclassification were from samples collected along a transitional zone or at the 

boundary (Figure 6.5).   
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Table 6.1.  Contingency table for counts of facies interpreted from video 
imagery (V) by manually delineated bathymetric regions (Z). 

Count Sand(V) Gravel(V) Boulder(V) Rock(V) Other(V)  

Sandy(Z) 98 89 0 0 14 

Gravelly(Z)  0 131 0 0 0 

Rocky(Z) 1 61 21 42 75 

 99 281 21 42 89 

 

The unsupervised LFH texture feature classification technique (Cutter et al., 

2003) results at the per-grid-cell level without spatial filtering resulted in several regional 

groupings that corresponded to subtle morphologies that were evident in the bathymetric 

data upon close reinspection.  Thus, the following questions arose:  what might the 

texture classes represent, and were they associated with real features, with data artifacts, 

or with processing artifacts?  If real features were represented, then were the differences 

in texture and morphology associated with differences among sediment classes or with 

differences of morphology for a single sediment class organized by different flow 

characteristics.  To determine whether these texture feature classes and subtle 

morphological differences were associated with previously unidentified sedimentary 

attributes, seafloor video imagery data were examined (Figure 6.6). 
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Figure 6.6. Supervised classification results LFH texture features from 
bathymetry.  Video transect labelled with facies identified from video 
images.  

 

Supervised classification uses prior information about characteristics known to 

exist.  Techniques involving spatial or textural attributes help eliminate most user bias 

and avoid introduction of artificial strict boundaries.  Supervised classification of 

bathymetry was performed using LFH texture feature prototypes developed at training 

locations where characteristics had been identified in video data.  Results clearly 

indicated that if training sample locations where prototypes were developed were not 

accurately located, then segmentations did not agree with known sediment distributions.  

Also, the rocky region contained several patches of shelly-, sandy-, and gravelly-

sediments.  Within the region manually delineated as rocky according to large roughness 

features, only 21% of the non-overlapping imaged fields directly revealed rock (Table 
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6.1).  Most of the image samples from the apparently rocky region revealed other 

sediments, predominantly biogenic shell.     

Without careful attention to both the location and characterization related by the 

training sample image data, the results of the supervised LFH classifications done using 

training samples from the rocky region shown in Figure 6.5 could predict sand, gravel, 

boulder, or other facies.  Like many other texture features, the LFH is constructed using 

an arbitrary spatial-integration scale.  If that spatial-integration scale covered more than 

one sediment class zone, then the texture feature and resultant classification could 

represent a combination class.  If the training sample came from a small patch surrounded 

by another facies with a characteristic morphology, then the texture feature actually 

would represent a morphology (and associated facies) different from that identified.  

Several resultant segmentations from supervised texture feature classification 

misrepresented spatial distributions of the classes used for training.  These results did not 

necessarily represent failures of the texture feature as a classification tool, but rather that 

in some cases the morphology did not represent the facies identified in the ground-truth 

imagery.  Additionally, some facies identified from the imagery did not have clear or 

consistent bathymetric expression at the spatial scales involved with the texture feature 

analysis.   

 

6.5.  Conclusions 

Zonation is not always accurate because sometimes “regional-level” variation 

occurs locally.  Ground-truth samples are not always able to provide verification for the 

interpretation of a bathymetry or backscatter map.  Sampling methodology and 
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experimental design can lead to inaccurate assessments.  Positioning uncertainty and 

habitat transitions can confound efforts to characterize the seafloor.  If positioning cannot 

be constrained, characterization and classification detail level will be limited.  Some 

questions can be addressed even if ground-truth position uncertainty is high, however 

compromise could required for the precision of characterization.  Ground truthing high-

frequency MBES data from shallow water requires accurate positioning, and perhaps 

requires non-traditional methods.  There can be cases where ground-truth data and 

properties inferred from bathymetry or backscatter data do not agree, yet both have 

validity.  Interpretation of habitat characteristics and classifications must account for the 

possibility that different data sources and spatial-scale mismatches might not lead to 

different and apparently incompatible classifications.   
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CHAPTER 7 

7.  SUPERVISED CLASSIFICATION OF GRIDDED MULTIBEAM 

BATHYMETRY DATA USING LFH TEXTURE FEATURES FOR 

HABITAT STRUCTURE CLASS PREDICTION 

 

7.1.  Introduction 

 Bathymetric surveys were conducted in 2004 off Saint John, USVI by the 

Center for Coastal Monitoring and Assessment, Biogeography Program of NOAA.  

Cruise Number NF-04-06-VI, aboard NOAA Ship Nancy Foster, was conducted in 

support of near shore and deepwater habitat characterization research (NOAA, 2004).   

The extent of the Saint John survey is shown in Figure 7.1; coordinates (in meters) are 

from Universal Transverse Mercator (UTM) projection, zone 20 north.  Bathymetric data 

were acquired using a pole-mounted Reson SeaBat 8101-ER multibeam echosounder.  

Details about data collection equipment, procedures, and processing can be found in the 

Data Acquisition and Certification Report (NOAA, 2004).   
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Figure 7.1.  DTM from main bathymetric survey area from 2004 Nancy Foster mission 
off Saint John, U.S. Virgin Islands. 

  

Habitat classification and characterization within the Saint John survey area was a 

primary interest to NOAA.  Cutter et al. (2003) and Cutter (2005) have demonstrated the 

applicability of LFH texture feature classification for segmentation of bathymetric data 

and generation of hypothetical habitat maps.  Based on those initial studies, NOAA 

requested that Local Fourier Histogram (LFH) texture feature classification be applied to 

the USVI bathymetry data.   

Local Fourier Histogram texture features were developed for identification and 

retrieval of images from large databases based on image content.  Technical details 

concerning the LFH texture feature can be found in Zhou et al. (2001).  LFH 
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classification has been applied to gridded bathymetric data in unsupervised (Cutter et al., 

2003), and supervised schemes (Cutter, 2005). 

 

7.2.  Data 

Within the Saint John  survey area, two subareas were chosen for gridding at high 

resolution (1 m by 1 m) and use for demonstration of LFH classification:  West, and 

Central subareas (Figure 7.2).   

 

Figure 7.2.  Saint John West (SJW) and Saint John Central (SJC) subareas considered for 
higher resolution gridding and classification.  

 

Gridded bathymetric data from the two subareas were provided by NOAA for use in LFH 

texture feature classification.  The data represented edited (hydrographically-cleaned) 

CARIS HIPS MBES soundings, binned to 1 m with shoal-biased selection, exported to 
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comma-separated ASCII-text files.  Data were projected using UTM projection, from 

UTM zone 20 north, based on datum NAD83, with depths in meters (Pers. Comm., A. 

Otter, NOAA, 2005).   

The Saint John West (SJW) subarea data were chosen for LFH analysis because 

ground-truth data from diver observations and video image analysis existed there (Figure 

7.3).   

 

 

Figure 7.3.  Video transects (black lines) and dive sites (points) from which ground-truth 
data for habitat characteristics were available.   

 

This work represents a demonstration of supervised classification of gridded 

bathymetric data using LFH texture features.  The gridded bathymetry dataset used was 
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the Saint John West (SJW) 2004 survey subarea, with 1 m by 1 m grid cell size (Figure 

7.4).   

 

Figure 7.4.  High-resolution grid (1-m grid-cell size) of the Saint John West (SJW) 
subarea, used for texture feature analysis.   

  

7.3.  Analysis 

7.3.1.  Habitat Structure Class Training Data  

Data from diver observations and video image analysis  were provided by NOAA 

for the SJW area.  Observations from these data describing seafloor structure were used 

for supervised LFH classification.  Dive data contained a variable called 

“HABITAT_STRUCTURE” and video data contained a variable called “STRUCTURE” 

that appeared to sufficiently describe features with bathymetric expression that would 
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have characteristic LFH texture feature vectors and therefore be useful as LFH class 

names.  Within SJW, data from11 dive sites were available with diver identified habitat 

structure class (Figure 7.5).   

 

 

Figure 7.5.  Saint John West (SJW) area bathymetry and dive sites labeled with diver 
identified habitat structure class.   

 

Also, data from a video camera deployment (STJ_Track8_2004) occurred within 

SJW (Figure 7.6).  Video images were visually interpreted as described by Battista and 

Kendall (Unpublished), included here as Appendix C.  These ground-truth data were used 
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for determining training data classes and locations for developing prototypes for 

supervised LFH classification.   

 

Figure 7.6.  Saint John West (SJW) area bathymetry and video transects encoded and 
labeled by video analysis results for habitat structure class.   
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Dive data from sites within SJW identified three types of habitat structure:  Spur 

and Groove ; Colonized Pavement and Sand Channels; and Linear Reef (Figure 7.7, 

labeled SG, CP+SC, and LR).  Video data identified four types of structure within SJW:  

Colonized Pavement; Colonized Pavement and Sand Channel; and Scattered Rock, Coral, 

and/or Sand; and Sand (Figure 7.7).   

Within the SJW area, six habitat structure classes, listed in Table 7.1, were 

identified by divers and video.   

 

Table 7.1.  Habitat structure classes identified by divers or video analysis, and 
abbreviated codes used during classification.   

Code Structure Class Name Identified By 

SG Spur and Groove Divers 

CP+SC Colonized Pavement and Sand Channels Divers and Video Analysis 

LR Linear Ridge Divers 

CP Colonized Pavement Video Analysis 

sRCS Scattered Rock, Coral, and/or Sand Video Analysis 

S Sand (unconsolidated sediments) Video Analysis 
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Figure 7.7.  Saint John West (SJW) area bathymetry and video transects and dive sites 
encoded by habitat structure type class.   
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Examination of the ground-truth dive and video data in conjunction with the 

bathymetric data led to choices of locations where LFH texture feature vector prototypes 

would be generated.  It appeared that some of the ground-truthed interpretations fit 

certain morphological patterns evident in the bathymetric data, however some 

interpretations seemed to occur across several morphologies.  For instance, the video-

derived structure type “Scattered rock, coral and or sand” extended across what appeared 

to be distinct bathymetric feature types in the DTM (Figure 7.7).  Similarly, the dive data 

habitat structure type “Spur and groove” occurred in some places where the DTM did not 

appear to have a noticeable spur and groove pattern.  This is not a criticism of the ground-

truth data, but rather an explanatory basis for the choice in training point locations for the 

LFH analysis.   

7.3.2.  Training samples location coordinates  

Figure 7.8 shows the ground-truth data subsets initially selected as potential 

training sample locations.  Six classes representing types of diver-identified habitat 

structure or video analyst-identified structure were considered.  It was determined that 

training samples would be developed for locations from which two types of structure 

were identified by divers (Spur and Groove, and Colonized Pavement and Sand 

Channels), three types of structure identified from video (Sand; Colonized Pavement; and 

Scattered Rock, Coral, and/or Sand), and one location where video identified Colonized 

Pavement, but nearby dive data identified Spur and Groove (Figure 7.7 and Figure 7.8; 

Table 7.2).   
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Figure 7.8.  Locations of potential training samples for supervised classificaton.   
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Table 7.2.  Coordinates of potential training samples for LFH classification of Saint John, 
western subregion ("SJW") representing selected dive and video data.  Coordinates from 
UTM zone 20 north, WGS-1984.  Preclass_ID codes key:  Sv = Sand from video; CPSCd 
= Colonized Pavement and Sand Channel from divers; CPv = Colonized Pavement from 
video; sRCSv = scattered Rock, Coral, or Sand from video; vCPdSG = Colonized 
Pavement from video and Spur and Groove from divers; SGd = Spur and Groove from 
divers.  

StationID Easting (m) Northing (m) Preclass_ID 
vS1 307639.70 2018884.25 Sv1 
vS2 307632.27 2018873.65 Sv2 
vS3 307624.20 2018863.56 Sv3 
vS4 307616.70 2018853.20 Sv3 
MSRO128 306865.35 2018483.89 CPSCd1 
MSRO189 306983.16 2018631.04 CPSCd2 
MSRO199 306971.26 2018498.33 CPSCd3 
vCP1 306920.86 2018365.39 CPv1 
vCP2 306909.66 2018360.24 CPv2 
vCP3 306899.11 2018617.91 CPv3 
vCP4 306907.00 2018625.71 CPv4 
v_sRCS1 307399.69 2019049.79 sRCSv1 
v_sRCS2 307389.42 2019048.28 sRCSv2 
v_sRCS3 307379.95 2019044.13 sRCSv3 
MSRO201 307321.91 2018660.87 vCPdSG1 
MSRO150 307371.53 2018651.52 vCPdSG2 
v192 307401.31 2018656.01 vCPdSG3 
v193 307393.42 2018651.32 vCPdSG4 
v194 307385.57 2018646.84 vCPdSG5 
MSRO160 306829.29 2019003.41 SGd1 
MSRO192 306829.61 2019141.78 SGd2 
MSRO193 306692.02 2019132.08 SGd3 
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One location representing each of those structure types (or combinations of types) was 

used to develop initial training sample LFH prototypes (Figure 7.9; Table 7.3).    

 

 

Figure 7.9.  Locations of training samples labeled with habitat classifications from 

divers or video analysis.   
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Table 7.3.  Coordinates of training samples for LFH classification of Saint 
John, western subregion ("SJW") representing selected dive and video data.   
Only one point from each interpreted class used for this classification.  
Coordinates from UTM zone 20 north, WGS-1984.  Preclass_ID key:  same as 
in Table 7.2. 
 
StationID Easting (m) Northing (m) Preclass_ID 
1-vS1 307639.709 2018884.252 Sv1 
2-MSRO128 306865.351 2018483.89 CPSCd1 
3-vCP1 306920.863 2018365.392 CPv1 
4-v_sRCS1 307399.696 2019049.799 sRCSv1 
5-MSRO201 307321.917 2018660.87 vCPdSG1 
6-MSRO160 306829.291 2019003.41 SGd1 
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Preliminary analysis suggested that there were several artifacts in the bathymetric 

grid apparently related to the survey operation, processing, and/or gridding.  The artifacts 

were most pronounced in the outer beam regions of the multibeam swath (Figure 7.10).  

 

 

Figure 7.10.  Noise, survey- or gridding-aritifacts in the gridded multibeam 
bathymetry.  
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An additional training sample location was included in attempt to represent the artifacts 

as a class, generally referred to as “Noise” hereafter.  The six structure type training 

sample locations along with the noise class location (in the western part of SJW) used for 

initial LFH classification are shown in Figure 7.11 and listed in Table 7.4.   

 

Figure 7.11.  The seven locations with training data used for LFH texture feature 
classification.  
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Table 7.4.  Coordinates of training samples for LFH classification of Saint John, western 
subregion ("SJW") representing selected dive and video data and a noise class sample.   
Only one point from each interpreted class used for this classification.  Coordinates from 
UTM zone 20 north, WGS-1984.  Preclass_ID key:  same as in Table 7.2, except for N = 
noise.   
 
StationID Easting (m) Northing (m) Preclass_ID 
1-vS1 307639.709 2018884.252 Sv1 
2-MSRO128 306865.351 2018483.890 CPSCd1 
3-vCP1 306920.863 2018365.392 CPv1 
4-v_sRCS1 307399.696 2019049.799 sRCSv1 
5-MSRO201 307321.917 2018660.870 vCPdSG1 
6-MSRO160 306829.291 2019003.410 SGd1 
7-Noise 306136.000 2018465.500 N1 
 

7.3.3.  Local Fourier Histograms (LFH) 

 Local Fourier Histogram (LFH) texture features were calculated using the 

procedure described in Cutter et al., (2003) and Cutter (2005).  LFH feature vectors were 

accumulated within 15 by 15 m blocks around each grid cell.  Supervised classification of 

LFH feature vector data was implemented using a minimum distance classifier method 

described in Cutter (2005).   

 

7.4.  Results and Discussion 

7.4.1.  Local Fourier Maps (LFMs) 

The LFH texture features represent distributions of three (or optionally, four) component 

values.   Development of the LFH texture features involves a preliminary step during 

which products called Local Fourier Maps (LFM) by Zhou et al. (2001) are generated.  

Each cell of the LFM represents the value of a Fourier transform coefficient for the series 
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of data in the neighborhood immediately surrounding each grid cell.  The three LFM’s 

generally relate to the behavior or variance of the data at relatively low, medium, and 

high spatial frequencies, with the particular spatial frequencies determined by the data 

grid cell size and also how distances are measured with respect to nearest neighbor cell 

groups.   

LFM1 represents coefficient 1 that can be considered to represent the variance or 

magnitude of a spatial frequency (f) occurring at 1 cycle per period (the period being 8 

grid cells and thus 8*1 = 8 m).  Similarly, LFM2 represents 2 cycles per period, and 

LFM3 represents 3 cycles per period.  Therefore, in a non-strict but intuitive sense (see 

Cutter 2005), LFM1, 2, and 3 can be considered to represent feature length scales of 8, 4, 

and 2.7 meters for this 1-m cell-size data grid.  Components 1, 2 and 3 from the Fourier 

transform are used here for the LFH classification, as implemented by Cutter (2005).  

LFM’s are developed from the bathymetric data alone without consideration of training 

samples or spatial-integration scales.   

LFM1, 2, and 3 are shown in Figure 7.12, 7-13, and 7-14.    
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LFM1 (Figure 7.12) is color coded using the red band of an RGB colorspace, with 

intensity representing weighted value (1000x).   

 

Figure 7.12.  Color-coded values for local Fourier transform component 1 (LFM1), 
representing low spatial-frequency variation; higher intensities represent larger values.   
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LFM2 (Figure 7.13) is color coded using the green band of an RGB colorspace, with 

intensity representing weighted value (2000x).    

 

 

Figure 7.13.  Color-coded values for local Fourier transform component 2 (LFM2), 
representing intermediate spatial-frequency variation; higher intensities represent larger 
values.   
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LFM3 (Figure 7.14) is color coded using the blue band of an RGB colorspace, with 

intensity representing weighted value (2000x).   

 

Figure 7.14.  Color-coded values for local Fourier transform component 3 (LFM3), 
representing high spatial-frequency variation; higher intensities represent larger values.   
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7.4.2.  LFMRGB psuedospectral 

It has proven useful to combine these color coded LFM’s into a pseudospectral-

like image referred to as LFMRGB by Cutter (2005).  The LFMRGB image represents 

color combinations and intensities that visually relate the component spatial frequencies 

and their relative magnitudes, from all three spatial frequencies at once.  Hence, the 

LFMRGB visually depicts what the LFH basically signifies:  a texture feature vector 

simultaneously representing multiple roughness scales (Figure 15).   

 

 

Figure 7.15.  The pseudospectral LFMRGB map, an additive combined product of the 
color encoded products from low, intermediate and high spatial-frequency variation 
(Red: LFM1, Green: LFM2, Blue: LFM3).  See text for detailed explanation.    
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In the LFMRGB image, bright red occurs where low spatial frequency roughness 

dominates; where green is bright, middle spatial frequency roughness dominates; and 

bright blue represents dominance by high spatial frequency elements.  Combinations of 

colors occur that represent combination of roughness element frequency bands.  For 

example red and green combined in equal proportions to produce yellow, therefore 

yellow would be indicative of an equal combination of low and medium frequency 

elements.  In this case, components representing spatial frequencies are weighted to 

accommodate value ranges of 8-bit color bands, therefore yellow represents equal 

combinations of weighted low and medium spatial frequency component values.   

The LFMRGB map (Figure 7.15) reveals the strong presence of noise or data 

artifacts occurring at the medium and high spatial frequencies (approximately > 2 m to 4 

m feature lengths), seen as blue-green linear bands along-survey-tracks.  The low spatial 

frequency (red in Figure 7.15) is dominated by signal from the seafloor morphological 

features, and some combination of low and medium morphological feature combinations 

are evident (as yellow in Figure 7.15) between the noise bands.   

Texture feature vectors are constructed using the data from LFM1, LFM2, and 

LFM3.  At any grid cell, an LFH texture feature represents the distribution of the values 

of LFM1, 2, and 3 within a specified block size, or spatial-integration scale.  For 

additional technical and mathematical details, see Zhou et al. (2001), Cutter et al. (2003), 

and Cutter (2005).   
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7.4.3.  LFH Classification of Habitat Structure  

Supervised LFH Texture feature classification, using prototypes developed at 

training sample locations for the 6 habitat structure classes and the 1 noise class (Table 

7.4) resulted in the hypothetical habitat map shown in Figure 7.16.    

 
Figure 7.16.  Map segmentation produced using supervised LFH classification 
with all training data classes.   
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The LFH class “Noise” (colored black in Figure 7.16) accounted for some of the 

data artifacts.  However, some of the other LFH texture feature classes still were 

influenced by noise, as the survey lines are evident and composed of two classes meant to 

represent levels of habitat structure.  Specifically, the Colonized Pavement and Sand 

Channel class from dive data (CP+SC_d), shown in blue, was attributed to much of the 

noisy data (Figure 7.16).  The Scattered Rock, Coral, and/or Sand class from video data 

(sRCS_v), shown as magenta in Figure 7.16, was also attributed mostly to noise.  The 

reason for this result could be that training samples were located in noise, or that the LFH 

feature vectors for the actual noise and the classes CP+SC_d and sRCS_v were similar.  

Eliminating the CP+SC_d and sRCS_v classes from consideration results in the map 

shown in Figure 7.17 that represents four habitat structure classes. 
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Figure 7.17.  Map segmentation produced using supervised classification.  Classes 
that were influenced by noise or artifacts are shown as white.  The segmentation 
from the remaining classes corresponds to morphological regions evident in the 
bathymetry.   

 

 

The noise-eliminated LFH hypothetical habitat class map (Figure 7.17) represents 

the structure levels of: Sand (SANDv); Colonized Pavement (CPv); Spur and Groove 
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(SGd); and either Colonized Pavement and/or Spur and Groove (CPv+SGd, previously 

also called “vCPdSG”).  Recall the CPv+SGd class was developed for a location where 

the dive and video data differed within a small distance.   
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7.4.4.  Evaluation and Preliminary Validation 

If we examine the ground-truth data and the LFH class map simultaneously 

(Figure 7.18), we see that there appears to be good agreement between the classifications 

made by video analyst and spatial distributions depicted by the LFH map.   

 
Figure 7.18.  Supervised classification results and video and diver classifications.  
The same colors were used to represent class levels for the texture feature classes 
and diver/video data classes. Class labels are included on the map.   



 189 

 

Since the LFH classes mixed with noise are removed, we see that the CP+SC_d 

class described by divers occurred in three locations within the data noise regions.  The 

only class that is clearly inconsistently described by the ground-truth data and the LFH 

class map is the “Scattered Rock, Coral, and/or Sand” class from the video interpretation 

data.  The LFH classification did not discriminate that class from noise, and predicted 

other classes occurring where video sRCS_v occurred.  Otherwise, the “Sand” class 

distribution predicted by LFH appears consistent with the ground-truth data, as does the 

“Spur and Groove” LFH class.   

The LFH class CPv+SGd is difficult to assess because dive data appear to be 

somewhat inconsistent with video data.  If we believe the video data, then the CPv+SGd 

LFH class, shown as gray, would be the same as the CP_v class, shown as green (Figure 

7.18).  In that case, the match between the LFH class map and the video data would be 

better in the eastern part of SJW (near 307400, 2018700).  Figure 7.19 reproduces Figure 

7.18, without intrusive labeling, representing a noise-eliminated LFH hypothetical habitat 
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class map with ground-truth data.  

 

Figure 7.19.  Supervised classification results and video and diver classifications.  
The same colors were used to represent class levels for the texture feature classes 
and diver/video data classes. The video-transect ground-truth data generally verify 
LFH texture feature classification.   
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7.5.  Accuracy Assessment 

7.5.1.  Initial overall assessment 

Video data from STJ_Track8_2004 will be used for initial validation and 

accuracy assessments of characterizations predicted from LFH classes.  Except for 

colonized pavement, the prediction accuracy of several of the LFH classes appeared low, 

particularly for the CP+SCd (colonized pavement and sand channels according to divers) 

and sRCSv (scattered rock, coral, and/or sand according to video) classes (Table 7.5), if 

no consideration is given to complicating factors.   

Table 7.5.  Contingency table for habitat structure LFH class 
(LFH-OrigClass) by habitat structure indicated by video 
(VidStruct).   

Count 
Row % 

CP+SCv CPv SANDv sRCSv  

CP+SCd 3 
3.85 

60 
76.92 

0 
0.00 

15 
19.23 

78 

CPv 0 
0.00 

40 
75.47 

1 
1.89 

12 
22.64 

53 

CPv+SGd 1 
3.23 

18 
58.06 

3 
9.68 

9 
29.03 

31 

NODATA 0 
0.00 

1 
33.33 

1 
33.33 

1 
33.33 

3 

NOISE 0 
. 

0 
. 

0 
. 

0 
. 

0 

SANDv 1 
5.26 

8 
42.11 

4 
21.05 

6 
31.58 

19 

SGd 2 
20.00 

5 
50.00 

1 
10.00 

2 
20.00 

10 

sRCSv 0 
0.00 

14 
53.85 

4 
15.38 

8 
30.77 

26 

 7 146 14 53 220 
 

 

Recall that CP+SCd and sRCSv LFH classes were considered to be confounded by 

artifacts in the bathymetric grid.  Therefore, they were ultimately combined into the 
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“NOISE” class.  The “NOISE” LFH class represented bathymetry grid data dominated by 

artifacts, and contained 104 of the 220 video observations that were coincident with LFH 

prediction locations (Table 7.6).    

Table 7.6.  Contingency table for VidStruct By LFH-
NewClass2 LFH classes with NOISE LFH class containing 
Noise, CP+SCd and sRCSv.   

Count 
Row % 

CP+SCv CPv SANDv sRCSv  

CPv or 
CPv+SGd 

1 
1.19 

58 
69.05 

4 
4.76 

21 
25.00 

84 

NODATA 0 
0.00 

1 
33.33 

1 
33.33 

1 
33.33 

3 

NOISE 
(and 
CP+SCd 
or sRCSv) 

3 
2.88 

74 
71.15 

4 
3.85 

23 
22.12 

104 

SANDv 1 
5.26 

8 
42.11 

4 
21.05 

6 
31.58 

19 

SGd 2 
20.00 

5 
50.00 

1 
10.00 

2 
20.00 

10 

 7 146 14 53 220 
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7.5.2.  Colonized pavement 

When the LFH classes “CPv” (colonized pavement according to video data) and 

“CPv+SGd” (colonized pavement according to video data, but spur and groove according 

to divers) were combined, the result was that 58 of the 84 cases where CPv or CPv+SGd 

was predicted by LFH, ground-truth video confirmed to be CPv by video.  Hence, in this 

case we are ignoring diver data that suggested that spur and groove existed near where 

video indicated colonized pavement.  The prediction of CPv by LFH was (58/84) 69 % 

accurate when allowed to also contain the CPv+SGd class.   

For the case where we did not combine CPv and CPv+SGd classes, LFH predicted CPv, 

40 of 53 cases where CPv was predicted by LFH, ground-truth video confirmed to be 

CPv by video.  Under these circumstances, the prediction of CPv by LFH was (40/53) 75 

% accurate (Table 7.7). 

Table 7.7.  Contingency table for VidStruct by LFH classes 
with CPv and CPv+SGd classes considered separately.   

Count 
Row % 

CP+SCv CPv SANDv sRCSv  

CPv 0 
0.00 

40 
75.47 

1 
1.89 

12 
22.64 

53 

CPv+SGd 1 
3.23 

18 
58.06 

3 
9.68 

9 
29.03 

31 

NODATA 0 
0.00 

1 
33.33 

1 
33.33 

1 
33.33 

3 

NOISE 3 
2.88 

74 
71.15 

4 
3.85 

23 
22.12 

104 

SANDv 1 
5.26 

8 
42.11 

4 
21.05 

6 
31.58 

19 

SGd 2 
20.00 

5 
50.00 

1 
10.00 

2 
20.00 

10 

 7 146 14 53 220 
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7.5.3.  Sand 

The prediction of “SANDv” (sand according to video data) by LFH was (4/19) 21 

% accurate according to ground-truth video.  LFH predicted “SANDv” in 15 cases where 

either sRCSv (scattered rock, coral, and/or sand), CPv (colonized pavement), or CP+SCd 

(colonized pavement with sand channels) existed according to video data.  However, 

there are additional factors to consider:  similar classes and sampling coverage.   

7.5.4.  Similar classes 

If the video classification “sRCSv” (scattered rock, coral, and/or sand) is 

considered to represent mostly unconsolidated material, and to be indistinguishable in the 

bathymetry from unconsolidated sand (“SANDv”), then SANDv and sRCSv can be 

combined into a single class called unconsolidated.   The LFH results suggest that those 

two classes were not really distinguishable by texture.   

When SAND and sRCSv classes were combined into a single class (UNCONS), 

the accuracy of LFH classification improved.  Under the circumstance where LFH classes 

SANDv and sRCSv were combined into a class called UNCONS (unconsolidated), the 

prediction of UNCONS by LFH was (10/19) 53 % accurate (Table 7.8).   
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Table 7.8.  Contingency table for VidStruct by LFH class, 
where structure classes “SANDv” and “sCRSv” were 
combined into a single class representing unconsolidated 
material (“UNCONS”). 

Count 
Row % 

CP+SCv CPv UNCON
S 

 

CPv 0 
0.00 

40 
75.47 

13 
24.53 

53 

CPv+SGd 1 
3.23 

18 
58.06 

12 
38.71 

31 

NODATA 0 
0.00 

1 
33.33 

2 
66.67 

3 

NOISE 3 
2.88 

74 
71.15 

27 
25.96 

104 

SGd 2 
20.00 

5 
50.00 

3 
30.00 

10 

UNCONS 1 
5.26 

8 
42.11 

10 
52.63 

19 

 7 146 67 220 
 

7.5.5.  Sampling coverage 

The relatively low accuracy for LFH prediction of sandy or unconsolidated 

structure habitats was also a function of the video sampling.  Very little video coverage 

existed in the regions where “SAND” was predicted by LFH (Figure 7.20).  The majority 

of the area predicted to be “SAND” by LFH was considered to be valid and more 

accurate than indicated by video data according to inspection of the bathymetry.   
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Figure 7.20.  Map segmentation produced by supervised classification of LFH texture 
features.  Arrows indicate the locations of the few locations where sand was identified 
from video imagery.   
 

7.5.6.  Spur and Groove 

 Spur and groove habitat structure was identified only by divers.  Formal 

assessment of LFH class prediction for spur and groove (SGd) was not done because 

nearly all dive locations were in bathymetric noise.   
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7.6.  Conclusions 

Noise and data artifacts were revealed by LFMRGB, allowing development of a 

specific texture class for representing noise.  In addition, the LFM’s might provide a 

means for filtering the data noise, prior to analysis and classification.   

 The texture feature analysis of the bathymetry predicts that the sand class exists 

on the tops of some of the reef plateaus (Figure 7.18).  Whether that is true or not is not 

determinable from the texture feature analysis.  Additional constraints can be placed upon 

the classification of the LFH texture features by either considering additional data or 

incorporating other attributes (suggested by backscatter value, for instance).  If that is not 

done, then similar morphologies will produce similar textures, and not be separated, even 

if the substrates or structures differ.   

Distinct types of seafloor materials can be organized to generate similar 

morphologies that texture alone will not discriminate.  In general, however, the LFH 

texture feature classification technique, using only gridded bathymetric data, works quite 

well to predict spatial distributions of seafloor morphologies and structure classes, on a 

cell-wise basis.   
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CHAPTER 8 

8.  SUMMARY AND CONCLUSIONS 

 

Mapping seafloor habitats was a primary goal of this dissertation work and was 

accomplished using bathymetry and acoustic backscatter data from multibeam 

echosounders (MBES).  This dissertation also reviews habitat concepts, marine habitat 

classification schemes, and habitat mapping efforts.  MBES bathymetry data and acoustic 

backscatter data provided means of distinguishing habitats and facies.  Habitats and 

facies could often be distinguished from high-resolution MB bathymetry grids, alone.  

When the seafloor contained even subtle, but consistent, morphological patterns, habitats 

could be delineated by eye from MB bathymetry.  Apparent habitats were delineated 

using analyst interpretation (manual delineation), and using texture analysis and spatial 

covariance properties.  Manual delineation was suitable for producing crude delineations 

of primary facies and habitats that corresponded to regions composed of prominent 

morphological features or patterns.  When bathymetry or backscatter data were at higher 

resolutions, it was more difficult to determine where to define boundaries because so 

many feature details could be distinguished.  Individual features such as rock outcrops or 

boulders, and subtle morphological differences that were not visible in lower-resolution 

maps could be seen in higher-resolution maps.  Delineation then became a problem of 
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feature-identification rather than zonation.  Hence, the efficacy of manual delineation 

methods can be reduced when data are high resolution.   

Texture analysis and spatial covariance properties provided the basis for 

quantitative methods used to infer spatial distributions and zonations of seafloor 

characteristics.  Texture feature analysis and spatial covariance classification served to 

overcome some of the bias of manual delineation methods for bathymetry and backscatter 

maps.  Texture feature analysis could distinguish many different morphologies and 

identify them on a per-grid-cell basis.  Per-grid-cell texture-feature classification is an 

improvement over manual delineation because it is often unclear where boundaries 

should be drawn or if boundaries should be drawn at all during manual delineation.  

Boundaries are not always apparent in seafloor bathymetry or backscatter data.  Divisions 

between facies, habitats, or morphological regions sometimes exist, but are not often very 

distinct.  Transitions between facies and habitats can be subtle or undetectable.  Habitat 

patches can be small.  In these cases, the automated methods that are based on statistical 

distributions of attributes measurable from bathymetry or backscatter maps can produce 

better delineations.   

The results of texture feature classification was a segmentation; that is essentially 

a delineation of every map grid cell.  Often, segmentation results resemble results of 

manual delineation because of feature zonations.  However, segmentation methods are 

able to distinguish and classify much smaller map units than manual delineation methods.  

Segmentation by texture can produce products that appear noisy or overly heterogeneous, 

with many small units, and hence difficult to interpret and verify.  Ground-truthing data 

representing similar spatial scales to the smallest variations in the segmentation products 
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are required to validate that different textures, for instance, correspond to differences in 

seafloor attributes.  Backscatter data might be able to suggest that differences appear to 

exist for seafloor characteristics, but backscatter data must also be ground truthed.   

Linkages were established between characteristics assessed using physical grab 

samples and seafloor video imagery.  By regrouping and reanalyzing data from these 

different sources, inferences could be made using either source.  Collecting and 

interpreting imagery is generally less expensive in terms of time and funds.  Data from 

both are required from some locations in order to establish correspondence, but then data 

from imagery could be used alone for characterizations.  Efforts that make ground-truth 

data from different sources compatible enhance the ability to make accurate 

characterization of seafloor attributes. 

Imagery allows non-invasive inspection and larger coverage area than physical 

samples, but image detail can be limited.  Also, assessing video image sequences for 

seafloor characteristics or biological resource assessments can be difficult and tedious.  A 

mosaiced image produced from a sequence of images using co-registration techniques 

can overcome some of the difficulty involved with analyzing video sequences.  However, 

producing mosaics can be time-consuming and mosaics can incorporate errors and can 

obscure features.   

Results suggest that to achieve accurate counts of organisms or seafloor features 

from analysis of video imagery, care must be taken to ensure that the data samples 

represent non-overlapping fields-of-view.  Mosaics eliminate the need to repeatedly 

review portions of a video-image sequence to determine the bounds of non-overlapping 

sampled fields-of-view by showing the entire coverage area.  Image mosaics can 
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facilitate interpretation of processes occurring at spatial-scales not clearly evident in 

individual video image frames, and expand the capabilities of characterization.  The 

mosaicing (image co-registration) process can be time-consuming, and accurate co-

registration is not possible for all imagery.  Video-image sequences or individual images 

from discrete locations can be as, or more, effective for determining seafloor 

characteristics or assessing biological resources.  It is important to control how 

characteristics are measured or counted in video image sequences to avoid bias and have 

consistent, reproducible results.   

Spectral model parameters that describe seafloor roughness that are important to 

empirical and theoretical models relating acoustic backscatter to seafloor properties can 

be estimated from sediment profile images.  The combination of two spectral parameter 

estimates (slope and intercept) provide a better discrimination of seafloor facies and 

classification of seafloors than estimates of roughness from vertical elevation differences 

or RMS deviation.  Spectral slope value and intercepts estimated from SPI are within the 

range reported for published values.  The range of SPI spectral slope values (-2.60 to -

2.05) suggests that spectral slope (or spectral exponent) should not be considered a 

constant term for models, even for the spatial frequencies of microtopographical profiles.  

The relationships between spectral slope and intercept values and physical and biogenic 

roughness and associated seafloor facies suggest that local seafloor zonation and facies 

distributions should be accounted for when interpreting and applying roughness spectra 

parameter values.   

The number of classes and spatial-integration scale had to be specified arbitrarily 

for unsupervised classification of seafloor bathymetry.  A single spatial-integration scale 
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was generally not sufficient for a study area; each morphological region tended to have a 

distinct spatial covariance properties.  Hence, spatial covariance of bathymetry or 

backscatter could be used for classification and segmentation of habitats.  Also, it was 

apparent that spatial covariance properties might provide a way to optimize defining 

spatial-integration scales used for unsupervised classification.  However, the choice of 

number of classes for unsupervised classification would remain arbitrary.   

Supervised classification provided a way to infer seafloor characteristics for entire 

bathymetric survey maps based on only sparse ground-truth data, and the number of 

classes were predetermined from ground-truth data.  Results reported in this dissertation 

from supervised classification of MBES bathymetry using texture features had good 

correspondence with hold-out ground-truth data and spatial distributions of morphologies 

visible in the map.  It was found that the verity of accuracy assessments from ground-

truth data were provisional upon the circumstances of data collection, including 

positioning error.  Positioning error also allowed inaccurate classification.   If the 

positions of ground-truth data used for developing classification prototypes were 

inaccurate, then classes assigned to morphological textures at the reported locations could 

have been intended for nearby, but different morphologies.  It is critical to account for 

heterogeneity if ground-truth positioning data have high uncertainty relative to the detail 

of the bathymetry or backscatter data used for classification.   

It is important to allow for unknown, unidentified classes when implementing 

supervised classification to prevent data from being forced to fit into classification 

scheme developed from observations for only part of the area studied.  Good, robust 
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classification results can be produced using supervised classification based on 

bathymetric texture and sparse ground-truth data   

Supervised classification of bathymetric texture was implemented to account for 

data artifacts and prevent artifacts from affecting classifications.  Distinct types of 

seafloor materials can be organized to generate similar morphologies that texture alone 

will not discriminate.  In general, however, the LFH texture feature classification 

technique, using only gridded bathymetric data, works well to predict spatial distributions 

of seafloor morphologies and structure classes on a per-grid-cell basis and is robust to 

data artifacts.  If systematic methods are included to account for conditions that do not fit 

a classification scheme, it is possible to produce consistent, accurate, and low-bias habitat 

maps and seafloor characterizations using semi-automated methods including 

classification using LFH texture features, spatial- and roughness-model parameters, or 

acoustic backscatter data.   
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 APPENDIX A  
 
 
 

ROUGHNESS SPECTRA PARAMETERS FROM SEDIMENT PROFILE 

IMAGES FROM THE LOWER PISCATAQUA RIVER 

 

A.1.  Introduction 

 It has been shown that seafloor roughness spectra can be described using a power-

law model, for spatial scales from centimeters to many kilometers (Fox and Hayes, 

1985).   Parameters describing the relationship between spectral power (or amplitude) 

and spatial frequency have been used for modeling acoustic backscatter from the seafloor 

(Jackson et al., 1986; APL-UW, 1994; Sternlicht and de Moustier, 2003).  Although the 

backscatter models use two-dimensional forms of the parameters, typically the 

parameters are estimated from one-dimensional profiles that are extracted from seafloor 

elevation data from singlebeam and multibeam echosounders, stereophotographs, diver 

traces (Fox and Hayes, 1985; Stanic et al., 1988, 1989; Briggs, 1989; Jackson and Briggs, 

1992) or laser lines.   

This study uses sediment profile images to provide the seafloor elevation profile 

data.  Profiles from digitized sediment profile imagery (SPI) images provide data series 

with a sub-millimeter resolution and 10 to 15 cm length.  Thus, these images extend into 

a new spatial frequency band for seafloor spectral roughness measurement.  The spatial 

frequency band represented by SPI images is important because it encompasses the 
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acoustic wavelength scales for many of the high-resolution multibeam echosounders, 

sidescan sonars, and interferometric sonars now in use.    

 

A.2.  Methods 

 Sediment profile images were acquired using a Diaz digital model SPI that 

incorporated a Minolta Dimage-8 digital camera.  Images were collected on 19 May, 

2003 from eight sites in the lower Piscataqua River, east of Newcastle Island, New 

Hampshire (Table A.1).  The UNH research vessel R/V Gulf Challenger was used for the 

deployments.   

 A camera deployment involved lowering the system by winch wire to the 

seafloor, whereupon slack is provided for 20 to 30 s.  During that time, the camera prism 

penetrates into the seafloor.  In automatic operation mode, the camera descent begins a 5-

s time delay sequence after which two images are captured with a 5-s delay between 

them.  The camera was used in remote-controlled mode for this deployment.  Remote 

control was accomplished using a cable from the camera to the surface vessel that 

terminated in a manual triggering device and carried a live video signal from the camera 

for remote monitoring of the operation.  The time delay between touchdown and image 

capture allows the prism time to penetrate into the seafloor at a rate controlled by a water-

filled piston that acts to dampen the penetration rate.  During each deployment, two to 

four pseudoreplicate images were captured.   

Analyses 

 Roughness spectra were calculated using the method of Briggs (1989).  Images 

from sites 1, 5, 6, 7, and 8 (Figure A.1) were used to estimate spectra.  First, the seafloor 
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interface was traced manually from the digital image, scaled according to known spatial 

scales so that data were generated in cm size-units rather than pixels.  The seafloor profile 

data were a set of elevations and distances, (x,z).   These data were submitted to the 

processing steps described by Briggs (1989) and implemented in D. Percival’s 

FORTRAN code (unpublished).  The first step was a pre-whitening operation (see Fox 

and Hayes, 1985) accomplished by taking the first differences of the elevation series then 

removing the mean.  A 20% cosine taper was applied to the differenced, detrended series.  

A fast Fourier transform (FFT) was applied, producing coefficient values whose squared 

magnitudes were used as the uncorrected periodogram.  The periodogram was corrected 

for the prewhitening operation and represents the estimated power spectrum.    

The estimated power (S) and frequency (f) were log-transformed and a linear 

model fit to the log-log data.  If the power approached white noise (flat spectrum) at the 

higher frequencies, then those frequencies were excluded from the fit and the linear 

model was recalculated to the restricted range.  Noise rejection was necessary in all cases 

for the six images analyzed.  The slope of the linear model and the intercept at a spatial 

frequency of 1 cycle/cm were recorded as the spectral parameters.   

 

A.3.  Results and Discussion 

 The SPI images analyzed came from two distinct facies within the lower 

Piscataqua River.  Images 1 – 4 came from a gravel deposit and 5 – 8 were from a rippled 

sand dune (or sand wave) field that was easily distinguishable in bathymetric grids from 

multibeam echosounder data.   Spectral slopes and intercepts were distinct for the two 

facies.   
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 The spectral slope for the SPI image profile from the gravel deposit was -3.40 

(Figure A.2), much larger than published values for gravel and larger in magnitude than 

the maximum value suggested by the APL-UW (1994) model.  The spectral slope, as 

estimated here, is the negative of the one-dimensional (1-D) form of the spectral 

exponent (� ), as it is denoted by the acoustic modelers.  The 2-D form of the exponent, � 2, 

is � 2 = � 1 + 1 (Jackson et al., 1986).  Therefore, in this case, the value of � 2 from the 

gravel deposit of the lower Piscataqua River, was 4.40.   The APL-UW (1994) model 

suggests an upper limit of 3.99 for the two-dimensional (2-D) form of the spectral 

exponent parameter.  The spectral intercept for the gravel deposit SPI image, 0.00071, 

was also high relative to published values.   

The absolute values of the spectral parameters for the the rippled sand dunes were 

not unusual with respect to published values.  Spectral slopes for SPI image profiles from 

the rippled sand dunes ranged from -2.16 to -2.57, and intercepts ranged from 0.00015 to 

0.00030 (Table A.2, Figure A.3, Figure A.4).   

 

A.4.  Conclusions 

 The sediment profile camera does not penetrate well, or at all sometimes, into 

sediments of pebble to cobble size.  Therefore, the SPI camera is not a robust tool for 

examining in further detail the apparently unusual results obtained for the spectral 

parameters from the gravel deposit.  For such sediments, a stereo photography system 

would produce better results, although perhaps at slightly lower resolution and spatial 

frequency scales.  Other alternatives such as laser profilimetry are worth considering as 

options for collecting seafloor profile data.   
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A.7.  Tables for Appendix A 
 
 
Table A.1. Sediment profile image (SPI) sample site locations for the 
Piscataqua River study area.    
Sample code Time  

(UTC) 

Latitude  

(degrees decimal 

minutes) 

Longitude  

(degrees decimal 

minutes) 

PSPI1 16:08:17 43 03.484 N 070 42.156 W 

PSPI2 16:11:55 43 03.587 N 070 42.207 W 

PSPI3 16:14:55 43 03.706 N 070 42.237 W 

PSPI4 16:25:40 43 03.814 N 070 42.267 W 

PSPI5 16:29:00 43 03.919 N 070 42.270 W 

PSPI6 16:31:30 43 03.994 N 070 42.297 W 

PSPI7 16:34:00 43 04.086 N 070 42.319 W 

PSPI8 16:36:10 43 04.181 N 070 42.322 W 
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Table A.2. Values of slope and intercept describing one-dimensional spectra from 
sediment profile images collected in the lower Piscataqua River, 2003. 
Pspi Slope Int SedClass Note Facies 

1 -3.4003 0.0007068 Pebble,Cobble - Pebble-cobble 

gravel deposit 

5 -2.1622 0.0002331 gravelly-Sand gravel-size 

shell fragments 

Rippled sand 

dunes 

6 -2.1747 0.0001502 gravelly-Sand gravel-size 

shell fragments 

Rippled sand 

dunes 

7 -2.5739 0.0002969 gravelly-Sand gravel-size 

shell fragments 

Rippled sand 

dunes 

8 -2.4186 0.0002060 gravelly-Sand gravel-size 

shell fragments 

Rippled sand 

dunes 
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A.8.  Figures for Appendix A 
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Figure A.1.  Sediment profile image (SPI) sample site locations in 
the lower Piscataqua River.   
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Figure A.2.  Sediment profile image, seafloor profile and spectrum from 
Piscataqua River SPI sample site 1 (slope = -3.4003, intercept = 0.0007068).   
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Figure A.3.  Sediment profile image, seafloor profile and spectrum from 
Piscataqua River SPI sample site 5 (slope = -2.1622 , intercept = 
0.0002331).   
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Figure A.4.  Sediment profile image, seafloor profile and spectrum from 
Piscataqua River SPI sample site 7 (slope = -2.5739, intercept = 
0.0002969).    
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 APPENDIX B  
 

 

DATA AND IMAGES USED FOR SEDIMENT GRAIN-SIZE 

CHARACTERIZATION
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B-1.  SEDIMENT GRAIN-SIZE DISTRIBUTION DATA FROM 

SAMPLES, GRAVEL NOT SEPARATED; USGS ANALYSIS 
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Table B.1.  Sediment grain-size analysis data for the lower Piscataqua River; USGS 

method. 
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Table B.1 (Continued).  Sediment grain-size analysis data for the lower Piscataqua River; 
USGS method.   
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Table B.1 (Continued).  Sediment grain-size analysis data for the lower Piscataqua River; 
USGS method.   
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Table B.1 (Continued).  Sediment grain-size analysis data for the lower Piscataqua River; 
USGS method.   
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Table B.1 (Continued).  Sediment grain-size analysis data for the lower Piscataqua River; 
USGS method.   
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Table B.1 (Continued).  Sediment grain-size analysis data for the lower Piscataqua River; 
USGS method.   
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Table B.1 (Continued).  Sediment grain-size analysis data for the lower Piscataqua River; 
USGS method.   
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Table B.1 (Continued).  Sediment grain-size analysis data for the lower Piscataqua River; 
USGS method.   
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B-2.  GRAIN-SIZE STATISTICS FROM GRADISTAT, SAMPLE DATA 

WITH GRAVEL NOT SEPARATED 
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Table B.2.  Sediment grain-size analysis data for the lower Piscataqua River; 

GRADISTAT results, gravel not-separated. 
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Table B.2 (Continued).  Sediment grain-size analysis data for the lower Piscataqua River; 
GRADISTAT results, gravel not-separated. 
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Table B.2 (Continued).  Sediment grain-size analysis data for the lower Piscataqua River; 
GRADISTAT results, gravel not-separated. 
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Table B.2 (Continued).  Sediment grain-size analysis data for the lower Piscataqua River; 
GRADISTAT results, gravel not-separated. 
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Table B.2 (Continued).  Sediment grain-size analysis data for the lower Piscataqua River; 
GRADISTAT results, gravel not-separated. 
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Table B.2 (Continued).  Sediment grain-size analysis data for the lower Piscataqua River; 
GRADISTAT results, gravel not-separated. 
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Table B.2 (Continued).  Sediment grain-size analysis data for the lower Piscataqua River; 
GRADISTAT results, gravel not-separated. 
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Table B.2 (Continued).  Sediment grain-size analysis data for the lower Piscataqua River; 
GRADISTAT results, gravel not-separated. 
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Table B.2 (Continued).  Sediment grain-size analysis data for the lower Piscataqua River; 
GRADISTAT results, gravel not-separated. 
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B-3.  GRAIN-SIZE STATISTICS FROM GRADISTAT, SAMPLE DATA 

WITH GRAVEL-SEPARATED 
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Table B.3.  Sediment grain-size analysis data for the lower Piscataqua River; 
GRADISTAT results, gravel fraction separated. 
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Table B.3 (Continued).  Sediment grain-size analysis data for the lower Piscataqua River; 
GRADISTAT results, gravel fraction separated. 
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Table B.3 (Continued).  Sediment grain-size analysis data for the lower Piscataqua River; 
GRADISTAT results, gravel fraction separated. 
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Table B.3 (Continued).  Sediment grain-size analysis data for the lower Piscataqua River; 
GRADISTAT results, gravel fraction separated. 
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Table B.3 (Continued).  Sediment grain-size analysis data for the lower Piscataqua River; 
GRADISTAT results, gravel fraction separated. 
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Table B.3 (Continued).  Sediment grain-size analysis data for the lower Piscataqua River; 
GRADISTAT results, gravel fraction separated.  
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Table B.3 (Continued).  Sediment grain-size analysis data for the lower Piscataqua River; 
GRADISTAT results, gravel fraction separated. 
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Table B.3 (Continued).  Sediment grain-size analysis data for the lower Piscataqua River; 
GRADISTAT results, gravel fraction separated. 

  



 246 

Table B.3 (Continued).  Sediment grain-size analysis data for the lower Piscataqua River; 
GRADISTAT results, gravel fraction separated. 
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Table B.3 (Continued).  Sediment grain-size analysis data for the lower Piscataqua River; 
GRADISTAT results, gravel fraction separated. 
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Table B.3 (Continued).  Sediment grain-size analysis data for the lower Piscataqua River; 
GRADISTAT results, gravel fraction separated. 
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B-4.  DISTRIBUTION PLOTS FROM SAMPLES, GRAVEL 

SEPARATED AND LITHOGENIC AND BIOGENIC PARTS 

SEPARATED 
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B-5.  Images Used For Estimating Sediment Grain Size Percent Coverage 

Area Distributions 
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B-6.  SAMPLE-VERSUS-IMAGE SEDIMENT GRAIN SIZE 

HISTOGRAM PLOTS USING RECOMBINED CLASSES 
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 APPENDIX C  
 
 
 
NOAA VIDEO INTERPRETATION METHODOLOGY:  USVI 2004 

 

Provided by:  T. Battista and M. Kendall (NOAA, NOS, NCCOS, CCMA, Biogeography 

Program).  

The benthic habitat of six seafloor video transects was assessed by visual 

interpretation.   The habitat was classified using three hierarchical levels: 

1. Structure 

2. Substrate 

3. Cover 

 

Structure referred to the broad-scale underlying habitat upon which biotic and 

abiotic matter or organisms accumulated.  The five structure types are:  

·  Colonized pavement 

·  Colonized pavement with sand channels 

·  Sand 

·  Scattered coral and rock in sand 

·  Other (if selected was described) 

 

Substrate denotes the visible abiotic components of the bottom which make up the 

structure and serve as a potential surface on which organisms can grow or attach.  Four 
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substrate classes, considered mutually exclusive and exhaustive, were measured as 

percent of the visible bottom.  These were: 

·  Consolidated material 

·  Sand 

·  Rubble (~2-10 cm) 

·  Cobble (~20 cm) 

 

Cover referred to the biotic component of the sea floor and was measured as 

percent of the visible bottom.  The biota was divided among four mutually-exclusive 

categories that are differentiated by their size and shape.  A sum of all cover categories is 

provided in the data as a measure of total colonization.  If organisms could not be 

unquestionably identified into one of the four cover categories it was added to the total 

colonization sum, but not to any other cover category.  Cover was distinguished as: 

·  Sponge (Phylum Porifera) 

·  Soft Coral (Subclass Octocorallia and subclass Ceriantipatharia) 

·  Hard Coral (Subclass Hexacorallia)  

·  Algae (Phylums Phaeophyta, Chlorophyta and Rhodophyta) 

 

An algal veneer was present on many hard bottom substrates and we attempted to 

quantify its extent.  In many instances the absence of color made quantification 

impossible.  In these instances a value of yes was added to the algal_veneer field.   

Habitat relief was also recorded.  It was defined as either high or low and identified areas 

where the abiotic vertical range was greater than or less than 1 foot, respectively. 
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Habitat was evaluated every ten seconds, however due to extreme variability in 

camera height, not all components of the habitat could be recorded consistently.  To 

compensate for potential problems in scale and unknown data values, each record was 

differentiated into one of five distance classes.  The distinct distance classes were 

selected based on which components of the habitat, defined hierarchically using structure, 

substrate and cover, were visible.  Notes were recorded to describe special situations 

when the classification system was not suitable or sufficient.  Cover was divided into two 

groups based on organism size generating two distance classes, because in many 

assessments large organisms were visible, when smaller ones were not.  Each distance 

class (and the corresponding visible habitat components) is listed below: 

1. Too close or too far (no components) 

2. Far (only structure) 

3. Far (only structure and substrate) 

4. Far (only structure, substrate and large organisms) 

5. Appropriate Distance (structure, substrate and large and small organisms) 

 

Caveats 

Approximate positional accuracy is ~20m.  The camera was unable to dive deeper 

than approximately 100 feet and therefore videos are biased shallow water samples of 

benthic habitat.  Extreme variability in camera height produced unstandardized, 

inconsistent habitat cover estimates by varying spatial scale.  This problem was 

exaggerated at low camera heights.  For instance, when the camera was 1ft from the 

bottom a single sponge could produce 100% sponge cover estimates, even if most of the 
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surrounding habitat was sand.  At the same location a greater camera height would have 

greatly reduced the sponge cover estimate.  When the camera was very far from the 

bottom the ten second time interval between observations was inadequate and a large 

proportion of the same bottom was evaluated in contiguous examinations.  The same 

problem arose when the camera was swinging. 

In a few instances camera listing (tilt) caused habitat distortions.  When the 

camera was vertical it was extremely difficult to assess 3-dimensionality.  This loss of 

data impeded identity of cover, probably reduced cover estimates of gorgonians and 

made it difficult to assess relief.   

 


