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PREFACE

Dissertation structure

This dissertation contains eight chapters, including two chapters that were
reformatted from peer-reviewed published works, and two chapters that have been
submitted for publication. Each chapter stands alone as independent research;, however
each presents important issues related to seafloor habitat and facietedzaten and
fits into the scope of the dissertation. As such, the dissertation does not read@d a log
sequence, and some repetition of topics might occur between chapters. The introductory
chapter attempts to provide the background and linkages that make this dissertation a
coherent work. The final chapter allows for expansion of, or revision to, ideas present
in the chapters, because some conclusions were reinforced by further thought and work,
and some hypotheses and conclusions were rejected with the introduction of new
evidence.

Chapter 1 (“Introduction”) contains an introduction intended to provide context
and link the topics in the other chapters.

Chapter 2 (“Seafloor segmentation using texture”) contains the text from a
publication describing texture feature analysis for unsupervised atasisifi of seafloor
bathymetry (Cutter et al., 2003).

Chapter 3 (“Ground truthing using image mosaics”) is based on a publication
describing the use of image mosaics to ground-truth habitat delineations predicted f

acoustic maps (Cutter et dh, Press3.



Chapter 4 (“Seafloor microtopographical roughness spectra”) represemexth
from a submitted manuscript describing estimation of parameters from rougheets
of seafloor microtopographical profiles from sediment profile images (C&uibmittedl
Results from spectral analysis of sediment profile imagery (SPI)esnfagm the
Piscatagua River are provided in Appendix A.

Chapter 5 (“Facies from the Lower Piscataqua River (Great BayriEstua
System) Characterized using Physical Samples and Video Imagesinsamipublished
work describing efforts to separately characterize sediment faangspls/sical sample
data and seafloor images and methodology and results linking the two approaches. The
impetus for this effort was the difficulty presented by having potentiadlyadate
information from different data sources. The goal was to produce comparable
information from different ground truthing methods and data sources. The realization of
that goal is fundamentally important to the process of seafloor chazatitariusing
bathymetry and backscatter from acoustic data.

Chapter 6 (“Benthic habitat classification, characterization, and the provisiona
truth of ground-truth”) is based on a publication describing segmentation and
classification of seafloor bathymetry and backscatter using statjsgxtural, and spatial
methods compared to results from ground truthing and the errors that can be involved
with uncertainty associated with ground-truth data (CL2&05.

Chapter 7 (“Supervised classification of gridded multibeam bathymetayudatg
LFH texture features for habitat structure class prediction”) descvilork done as a
demonstration project for the National Oceanic and Atmospheric Administration

(NOAA) Center for Coastal Monitoring and Assessment, Biogeography Prograe



effort involved prediction of reef habitat structure classes for everylLrhgrid cell
from a multibeam bathymetry survey area off Saint John, U.S. Virgin IslandstaHa
structure classes identified at points by divers and in video analysis dataseerto
develop prototype Local Fourier Histogram texture features used fovsguer
classification.

Chapter 8 (“Summary and Conclusions”) synthesizes the topics of this
dissertation. It is intended to put some of the efforts and results in perspective, and to

provide guidance for researchers involved in similar activities.
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ABSTRACT

SEAFLOOR HABITAT CHARACTERIZATION, CLASSIFICATION, AND MAS
FOR THE LOWER PISCATAQUA RIVER ESTUARY
by
George Randall Cutter, Jr.

University of New Hampshire, September, 2005

Seafloor data from multibeam echosounders, underwater images, and physical
samples were used to implement segmentations, classifications, andamessifor
seafloor characterization and habitat mapping. Texture analysis, usah§docier
histogram texture features, was applied to multibeam bathymetry data in nsegbe
and supervised-classification modes. Seafloor video-image mosaics were used t
characterize biogenic features and verify transitions between habitbéti@aved
descriptions of features that were not determinable from other imagery. abpeatiel
parameters (slope and intercept) that are important to models relatingabaakscatter
to seafloor properties were calculated to describe roughness from seafloor
microtopography in sediment profile images (SPI). SPI spectral-model gtararare
consistent with published estimates for data from other devices such as stayayit,
and values varied by sedimentary facies and bioturbational regime. Unsupervised
classification of bathymetry using texture features produced segioastttat

corresponded to known spatial distributions of seafloor sediments, but requiredyarbitrar

XV



choices for some parameter values and, therefore, included potential bias. Sdipervise
classification of bathymetric texture overcame bias related to ailyHrhosen
parameters, and produced classifications that corresponded well with ideseditabr
habitats and with ground-truth data. Similar textures can exist for diffszafibor
attributes. In general, however, the LFH texture feature clasgfid&ichnique, using
only gridded bathymetric data, works well to predict spatial distributionsafibse
morphologies and structure classes on a per-grid-cell basis and is robusttoiskata
The results from several classification methods exposed the weaknessraf-guth

data with high positioning uncertainty relative to the resolution and positioning
uncertainty for shallow-water multibeam echosounder surveys. Ground-truth thata wi
high positioning uncertainty were not reliable for assessment of delineatibns a
classifications of seafloor bathymetry and acoustic backscatter datia.g®sd ground-
truth data, accurate habitat maps and seafloor characterizations can begrsiog

automated techniques.
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CHAPTER 1

1. INTRODUCTION

1.1. Statement of Objectives

The overarching goal of my dissertation work was to establish means dy whic
seafloor habitat characteristics can be imaged, detected, interpretextfextively
mapped. | reviewed habitat concepts, marine habitat classification s¢laadémbitat
mapping efforts. Using multibeam echosounder (MBES) bathymetry and baekscat
data and sidescan sonar (SSS) backscatter data from the Portsmouth, Nehiddamps
common dataset, | implemented current methodologies for habitat delineation, then
described and applied new semi-automated delineation methods. | considereshaata fr
seafloor video mosaics to describe habitat characteristics at srpaliat scales, and
attempted to relate them to acoustically-sensed characteristicsd Hisg®ical sediment
sample data and sediment maps to produce hypothetical habitat maps, then compared
these to characterizations made using acoustic and optical data. Fiatddynpted to
address the questions: Are habitat classifications made using acoushotbggi@ally
or ecologically meaningful; do these classifications successfully detimegions of
distinct species distributions or community structure? If not, how can we modifgthabit
classification based on acoustic data to provide biologically meaningfulficiassn,

and what suite of tools and techniques should be applied to accomplish that?



My research focused on (1) automated and objective segmentation methods of
benthic habitat mapping from multibeam sonar bathymetry and backscatteg@ylata;
applying quantitative analysis of imagery to derive physical and biologgefloor
characteristics; (3) using techniques to provide overlapping spatias s¢alptical and
acoustic data; and (4) making linkages between characteristicsealsBess different

data sources.

1.2. Background

A common impetus for biological habitat mapping is to determine where and in
what densities organisms exist in order to make stock assessments oedvalogical
resources. Classically, benthic habitat mapping and resource assessmémidliaed
collecting point samples for benthic infauna and substrates (sediment tadiesjsect
tow samples for fish and epifauna. Optical imagery has often been used tbedescri
substrates and assess occurrences of certain fauna.

In many cases, occurrence or abundances of some species might bendbtermi
based on the substrates because associations exist between organisms@ald physi
habitat attributes. Therefore, even if expensive biological determinationstare
available, less expensive samples of physical environmental factors nisargaan be
used to make inferences about the biological resources of interest and to support
interpolations. Recently, habitat mapping efforts have involved the use aicseatips
generated from multibeam echosounders (MBES) or sidescan sonars (SSS). The
bathymetric and backscatter data from MBES can relate information abfiobsea

morphology and composition, with near complete coverage of the seafloor, and often at



high spatial resolution. Kostylev et al. (2003) have shown that scallop abundances were
correlated with multibeam backscatter strengths on Browns Bank in the GuUdiioé.

They suggest that, because of strong associations between scallops arldgravel
deposits, and because gravel lag regions had distinct backscatter intéosities

contiguous sandy regions, the prediction of scallop stock can be made from multibeam
backscatter data.

If strong associations exist between species and substrate and if backscatt
strength indicates substrate composition, then a simple backscatter map catlid dire
provide a basis for stock assessments. Unfortunately, strong associaticare aand
there are many complications that limit how well we can determine atésipe from
multibeam backscatter and therefore the accuracy of predictions aboutdablogi
resources is often hindered. What the acoustic data maps represent in terms ggbiologi
habitat depends upon what they represent in terms of physical habitat, and that in turn,
depends upon many factors and complex interactions. Also, seafloor maps derived from
acoustic data do not provide the complete description of the physical environment (i.e.,
all the important factors to biological resources). Even if the physical hatiributes of
the seafloor can be determined accurately from the acoustic data, an@matesmmon.
Known associations are generalizations, and there are many exceptions. Strong
associations between organisms and substrates do exist, but not as commorky as wea
and complex associations. However, the better the physical attributes cacrisede
the more likely that biological constituents might be predicted, and thus resource

assessments improved.



1.2.1. Recent seafloor habitat mapping

Marine and estuarine benthic habitat mapping and classification hasyecentl
become a worldwide priority of ocean science. Maps derived from multibeam
echosounders appear to provide the best basis for initial delineation of the seadloor int
geological and geomorphological regions (Mayer et al., 1999; Todd et al., 1999). A
physical habitat model developed from interpretation of those regions, with régards
substrate composition and water-column conditions, can be used to predict distributions
of benthic species or communities using any organism—substrate interactide,mode
existing biological or fisheries data, or new sample data. Maps from muitidoec
sidescan sonar data have been used for geological (Todd et al., 1999; Daditnell a
Gardner, 2004), ecological (Kostylev et al, 2001) and fisheries (Friedlander et al., 1999;
Kostylev et al., 2003) mapping, as well as habitat classification (Greahe E299).

MBES bathymetry and backscatter maps have been used to delineate the seafloor
into physical habitat regions and then assigned biological habitat classdhasample
imagery and biology samples (Kostylev et al., 2001). Thus, benthic habitat mapping has
benefited from the areal coverage and high resolution capabilities of multibeam
(Kostylev et al., 2001) and sidescan sonar systems. However, because of the complex
interactions between seafloor composition, geometry, and acoustic reflection and
backscatter (see Urick, 1983), multibeam and sidescan maps must be carefuty gr
truthed to confirm sedimentological and biological predictions.

Seafloor habitat maps, such as those produced by Kostylev et al. (2001), rely on
subjective expert interpretation of maps generated from multibeam batiiyandtr

backscatter data. Although manual interpretation is commonly used to delirzaterse



habitats, the potential exists to use more objective automated or semi-adtomate
segmentation of the seafloor using MBES or SSS data to interpret the seaflomsiofte
benthic habitat. The notion that habitat can be automatically classified foustiacdata
only applies to certain simple definitions of habitat given the present state dekigew
of acoustic-seafloor interactions. Even if a simple definition of habitat is uged (e
sediment type), many assumptions are still required about how the acoustitatiat® re
seafloor properties. Habitat types are interpretation-based productadoustic data.
Some of the properties required to describe habitat, such as substrate type, @neoe inf
from the acoustic data, but with considerable potential for error. Ground-trtith is s
required to make the connection and essentially test the hypotheses aboutypabitat t
that we make from the automated or semi-automated classifications. Thus what
produced from acoustic data is essentially a “hypothetical habitat map.” fhboaght
be argued that any map of seafloor characteristics constructed usipglatten is a
hypothetical map.

Expert knowledge and interpretation are not only aspects of map interpretation in
terms of habitat, but they are also components of habitat models (Brown et al., 2000;
Banner and Hayes, 1996). Thus, habitat maps incorporate subjectivity and may not
represent all important details. For instance, many habitat studies in¢cerpoestricted
treatment of habitat attributes (salinity, temperature, depth, and subgbetedespite
the fact that many other physical and biological interactions existdhgilcate the

relationships between organisms and habitat.



1.2.2. Habitat suitability indices (HSI)
Habitat suitability indices (HSI) have been created to summarize

associations and affinities between habitat attributes and certain bengjasifaome and
fish species (Banner and Hayes, 1996; Brown et al., 2000). If the degree oftassocia
between a species and habitat attributes can be determined, then the abgidycto pr
biological resources and fisheries stocks from physical environmentalestale c
improved. HSIis a function of a few parameters that are scaled and quantized to orde
guantify the strength of the affinity between a species and specific rahgeected
habitat attributes. In the scaled and quantized form, each parameter isreanaide
suitability index. HSI maps provide a spatial summary of a model combinirigpall t
individual suitability indices.
1.2.3. Habitat Fundamentals and Terminology

In much of the habitat-related literature, habitat usually connotes the spatial
domain and physical setting providing resources and tolerable conditions supporting
some aspect of an organism’s life. This definition is generally consistgnGnnnell’s
(1917) usage of “niche” that expresses what is now generally considerechphgiitat
as well as environmental constraints affecting distributions of organismshikidn’s
(1958) sense of niche encompasses the ranges of conditions within which species survive
and reproduce (Whittaker et al., 1973). A similarity exists between Hutchinson&ptonc
and the requirements of what is deemed “essential fish habitat” (EFH)igisaded by
the Mangusun-Stevens Fisheries Conservation and Management Act of 1996. It can also
be seen that maps of habitat suitability index (HSI) attempt to represeantiarfental

niche of Hutchinson (1958) in terms of realistic, detectable, mappable environmental



parameters for which species life history attributes are known. It is@smaon to
include biological modifiers (names of dominant species, or descriptions of biogenic
features) for describing habitat types, but these can cause confusion lecmmse
researchers habitat represents a physical entity whereas thedtopehs should be
used if the description involves biological attributes.

Biotope may be distinguished from habitat in that biotope relates the presence and
association of specific species or functional ecological group to a certatraseibhge or
condition. One of the prominent recent marine habitat classification schemesyBioMa
(Picton and Costello, 1998), uses biotopes as its ultimate class unit. BioMar lists
sublittoral sediments as a major habitat, and infralittoral muddy sands bt ha
complex; associated with that habitat (complex) are biotopes or biotope compléxes
terminology suggests that biotopes are refinements of habitat classes|trds i
biological descriptors that are sometimes specific but are sometanesadized. In the
generalized case, the class unit is considered a biotope complex. For examibbey “sha
muddy sand faunal communities” describes a biotope complex Eamihdcardium
cordatum(heart urchin) ané&nsisspp. (razor clams) in lower shore or shallow sublittoral
muddy fine sand” describes a biotope (Picton and Costello, 1998). The hierarchical
structure of that scheme is evident, and most recent classification scrensesilarly
hierarchical (see Greene et al., 1999; Allee et al., 2000).

Whether or not the physical habitat is distinguished from biotope may not be of
consequence because even biotope could be considered a generalization of biologically
modified physical conditions for species that are not detected. The usage aff deabit

encompass biotope (Bonsdorff et al., 1996; Kostylev et al., 2001) and may be understood



both ways. Standardization is being sought for habitat classification, sortedieqgy
might converge. What are important are the physical and biological habitaitatr
The differences of opinion concerning relevant attributes and spatial acaldsely the

source of the differences in terminology and approaches to classification.

1.2.4. Seafloor Habitat Attributes

As explained previously, habitats can be interpreted as spatial subsets of the
physical environment as they pertain to an organism or group of organisms. ifjo clar
the simplistic and overly general definitions of habitat, | reviewed publistietéa to
see how researchers used seafloor habitat attributes in order to illtistratecept of
habitat. For example, habitat attribute descriptors in the literature inchadiaity,
temperature, depth, substrate, wave exposure, eelgrass, specific sediraest(elgs
gravel, gravel over sand, muddy sand), hardbottom, sandy bottom, salt marsh, marsh
edge, inner marsh, oyster reef, dissolved oxygen, cover and habitat complexity, and area.
For synthesis, commonly used habitat attributes were summarized into a listobcom
attribute types (Table 1.1). Habitat classification schemes were noousaastruct the
attribute list. Note that not all of the attributes pertain to seafloor ckasdicts; rather
some pertain to water-column conditions.

Levels of detail and generality of attributes often differ according téothes of
the habitat mapping effort and the spatial coverage. For example, compatelibest
used in some of the benthic ecological studies focused on macroinfauna (Bonsdorff et al.
1996) to those of habitat suitability index (HSI) and essential fish habitaf) (E&tHes
(Brown et al., 2000; Able, 1999). It is not that attribute details are not generally

important, but typically that most attributes cannot be sensed in detail for tia spat



scales considered (sometimes because of the sampling devices used), or thagknowle
does not exist concerning how those attribute details relate to a particulasspetail

is generally sacrificed for coverage ande versa In the case of habitat mapping,
species size, motility and range determine the coverage necessasgnfdete mapping.
For defining, modeling, or mapping habitats, expert knowledge and interpretatidre c

considered components of a habitat model (e.g., Brown et al., 2000).

Table 1.1. Summary list of common attributes used in published articles to
describe seafloor habitat. Habitat classification schemes were not used to
construct this list.

Habitat Attribute

Salinity

Temperature

Substrate (type, class, grain size)

Depth

Dissolved Oxygen

Nutrients

Hydrodynamic energy regime

Complexity

Associated fauna

Disturbance regime

Other factors to consider:
Global and regional setting (typically an unstated attribute)
Time
Sediment and particle load and transport

1.2.5. Seafloor Texture, Roughness, and Spatial Attributes

In addition to seafloor composition, the spatial distribution of seafloor
features (landscape characteristics and patchiness) also influenites bietogy (Zajac
et al., 2000; Guichard and Bourget, 1998) and can be considered as habitat complexity, a

common habitat attribute (Table 1.1). In addition, the spatial scales of seaftooegea



and environmental influences are important. Benthic species distributions, abundances
and diversity are products of large and local spatial-scale processeggMnd Olsen,
1990). Many benthic studies have detailed data concerning the local processesnbut ofte
lack detailed large spatial-scale process information, meaning thigirgtations can
lack regional context of the seafloor properties and processes. Zaja2€00) showed
that benthic community differences could be explained by regional differences
sediment grain-size class when considered at the spatial scale of lamigSsund.
When considered at sub-Sound scale, community differences could be attributed to local
variations in seafloor properties. Spatial distribution and spatial scalesiability are
important habitat characteristics, and both large and small spatiad-acaleelevant. In
addition, if differences in properties can be described, they likely correspeaddtions
in the benthic community. The scales of sampling and analysis are importantt gtlew
al. (1998) suggest that determining an appropriate sampling scale is not aanitng®rt
sampling and modeling at multiple spatial scales. Larger spatial extesmtples allows
larger spatial scale processes to be described, but only a certain amoalugitddi
sampling is realizable because resources for sampling (funding, equipmang)aare
typically limited and, therefore , a compromise is made between samplingyderdi
extent (Hewitt et al., 1998). The situation is analogous to the choice, mentioned
previously, between detail and coverage.

Acoustic maps can help solve the sample-allocation problem. Shallow-water
MBES bathymetry and backscatter data allow detection of seafloor preprsipatial
scales ranging from decimeters to kilometers. MBES data can be usedribedgsatial

distributions and variability of apparent seafloor properties (such as taaesin-size
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class) over those scales. Maps of apparent facies distributions caatéasdinpling,

analysis and interpretation of biological data at multiple spatial seaddsng it possible

to address some of the issues described by Menge and Olsen (1990), Zajac et al. (2000),
and Hewitt et al. (1998). Detailed maps of the distribution and variation of seafloor
morphology and composition, might provide the interpretive link between data collected
for detailed benthic ecological work and habitat mapping efforts.

Because morphology can be used to interpret processes, morphological regions
can be indicative of coherent physical environmental conditions; either consistent
conditions or characteristic variation of conditions. For example, bedformsreaealye
indicative of steady unidirectional or oscillatory flow with velocity prediinducing
shear stresses within a certain range capable of mobilizing the sedoyp@vercoming
density, gravity, and friction). Bedform size and geometry for non-cohesiveeadi
depend primarily upon sediment grain-size distribution and flow or shear velocity.
Ideally, bedforms composed of a narrow sediment grain size distribution danatela
least the relative strength of currents or size and period of waves (é&g,,1480).

Even in a non-ideal case, there are two likely explanations for bedforms seen 1 MBE
data: that the flow induced them or that they are relict features from a pessgr One
or the other explanation might be more reasonable based on the particutar dystay

be possible to make inferences about the hydrodynamic regime given onlyddetaile
bathymetry and backscatter maps.

Even though it might not be possible to make inferences about specific conditions
or hydrodynamic behavior, regions of similar seafloor morphology and composition

suggest that similar processes have occurred in those regions. Therefereaif w
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identify and delineate seafloor regions with similar patterns of morpholadyy a
composition, then we have determined the spatial extents where the primairy fact
influencing benthic organisms are believed to be consistent or vary consisteatiipoiSe
morphological patterns can be identified manually by the investigator or atitalty by
using spectral, spatial, or textural analysis of seafloor backscattethgnmidry.

Seafloor roughness can be quantified using spectral analyses (Fox and Hayes,
1985; Pace and Gao, 1988; Briggs, 1989; Fox, 1996). Spectral analysis has been applied
to large spatial scale seafloor features (kilometer to tens of kilometditepfrom ocean
ridges) (Fox and Hayes, 1985), and to microtopographic seafloor profiles repigsentin
millimeters to decimeters (Briggs, 1989; Lyons et al., 2002; Pouliquen and Lyons, 2002),
and to sub-millimeter-resolution profiles from sediment profile images€Cutt
Submittegdl Spectral analysis involves transforming data from a spatial (or temhpmeal
frequency domain, and allows description of a range of spatial frequency components
comprising seafloor elevation profiles. The power spectrum represents thneearia
contained in the frequency components comprising a function or signal. The amplitude
spectrum is the square root of the power spectrum, or log of amplitude is half tfie log
power. Fox and Hayes (1985) and Fox (1996) used the amplitude spectrum, but the
power spectrum has been applied more often. If periodic features such as bedfstms
on the seafloor, then the spectrum from a topographic profile taken perpendicular to
crests will have a peak in the frequency band that represents the spati@héng of the
bedform periodicity (the wavelength). The Fox and Hayes (1985) model deshebes
spectral content of the seafloor elevation data in terms of a few pararhaterart be

used to discriminate seafloor regions based on roughness characteristics.
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Two-dimensional spectra can be summarized by four parameters of the Fox
(1996) model that represent 1) overall roughness, 2) strength of lineations aoamasot
roughness, 3) orientation of anisotropic components or lineation angle, and 4) amplitude
variation with scale as represented by the slope of the spectrum. High vahes of
fourth parameter, b, suggest that roughness is dominated by large-spatiabgghhess
(low spatial-frequency) features, and low values of b suggest that roughnessnatddmi
by small-spatial-scale roughness (high spatial-frequency) ésatdrhe parametéris
related to the fractal dimension in certain cases (Fox and Hayes, 1985). Hftberss
isotropic, only two parameters are necessary to model the one or two-dimensional
spectrum (Lyons et al., 2002). An alternative model for anisotropic seafloor regghne
provided by Lyons et al. (2002) where the power from periodic components is modeled
using a Gaussian function centered on the wavenumber vector representing tpe avera
ripple wavelength and orientation.

Roughness is important to acoustic backscatter and spectral parameters are
required to implement some of the widely used models that relate acousticat@cksc
seafloor properties (Jackson et al., 1986; APL-UW, 1994). However, it is difficult to
reconcile and compare parameters from amplitude spectra as used by F@ayesnd H
(1985) to parameters from studies using power spectra, such as Stanic et al. (1988),
Briggs (1989), Lyons et al. (2002), Jackson et al. (1996), or Sternlicht and DeMoustier

(2003).

1.2.6. Texture and Spatial-integration Scales
Typically, texture analysis has been applied to acoustic backscattefdata

instance, Huvenne et al. (2002) and Ojeda et al. (2004) used gray level correlation
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matrices to segment backscatter data according to texture. Highti@sblathymetric
data also have proven useful for texture analysis. Cutter et al. (2003) usede text
feature called local Fourier histogram (LFH) developed by Zhou et al. (208&ytment
bathymetry derived from shallow water MBES data.

Texture analysis generally involves texture features that descriloperiyr,
statistical distribution, or behavior occurring at a local spatial Seateglso depends
upon the repetition of that property regionally. Many texture features requireace
specified group of data points representing a spatial-integration scaés iOthe image
analysis research field, block sizes (regions of pixels where the analggiplied) are
specified arbitrarily, with no real support for the choice of sizes. For egampl
researchers calculate their texture feature vector within N by N lpioeks, where N can
be 16, 32, 64, etc. The size of the block and N are sometimes chosen because test data
(images) are composed of standard texture palettes (Brodatz textured)eves 512-
by-512 pixel images and are easily divisible into squares with sides of leqgtdd@
powers of two.

An important issue is that the spatial-integration scale can control the fohm of t
texture feature vector. A texture feature vector is basically @ seimerical values,
each of which represents some statistical attribute or distribution of vedneshe
texture feature analysis. If an integration scale is too small, then theetéeature might
not be able to represent the texture pattern. If an integration scale ig®mdhean the
texture feature might represent multiple textures. How to optimize lsjpaigration

scale, or at least how to avoid arbitrary decisions is undetermined.
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1.2.7. Spatial Variation Characterization

Spatial variation of seafloor properties can be described, quantitativelyadodel
and perhaps classified using spatial analytical tools such as variodgtamte(d, 1993).
The variogram is the variance of increments for a random variable

2g(h) =Var[Z(s+h)- Z(s)]
or

2g(h) = E[Z(s+h)- Z(s)]
(Robert and Richards, 1988). In practice, the empirical variogram is ofteratest as

20(h) =——  {Z(s+h)- Z(s))’

n(h) an _n

wheres is the spatial location vector (x,y) in two dimensidnsgs the lag distance
and orientation vector, n(h) is the number of pairs of observations at lag distance h, and Z
is a random variable or real-valued stochastic process (Cressie, 1989; Stein, 1999).
Technically, the variogram is two times the semivariogranth), but the term
variogram and semivariogram are commonly used interchangeably. Variograms
represent spatial covariation in terms of the change of variance with the eistéween
samples. In the case where a process is second-order stationary suchntieantise
constant and the covariance varies only with distance and not position (Cressie, 1989),

then the semivariogram is related to the autocorrelati¢m as
g(h) =C(O)[1- r(h)]
where C(0) is the variance. The variogram describes variance accordapgiat®n

distance, and at some separation distance the variogram value reachesathe over

variance. That distance is considered the range or effective range ofitigeararand
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the value where the variogram approaches the overall variance is knownilis Tees
shape of the variogram and the rate of increase describe how smoothly or abrdptly
the rate that the overall variance is approached. Herzfeld (1993) used those prtapertie
demonstrate that variogram properties could be used to distinguish and classignsedim
ponds, abyssal hills, and some complex terrains. Models are often fit to empirical
variograms, allowing spatial modeling and interpolation such as kriging, but model

parameters can be useful for classification of MBES data as shown bgld€i£93).

1.2.8. Ground truth imagery
Remotely deployed still-camera imagery can be used to ground truth

MBES or SSS maps, and the area represented by the image sample genarally
small relative to the scale of features present in the acoustic data setring§cqui
video/photos at greater heights above the seafloor because greaterteageti@distance
produces a larger imaged area. Underwater optical imagery, howeveitasd by
water-column conditions, owing primarily to attenuation of light by suspendedigsrtic
Light-attenuation is most pronounced in coastal waters, but applicable throughout the
oceans. Even when particle concentrations are low, light attenuation through clea
seawater limits the distance, and therefore the area, that can be ieladphygl. In the
deep sea where benthic boundary layer turbidity can be low, the limitation is tigtynte
of artificial light sources and camera receptors.

Video imagery can be used to provide continuous image data along large
distances, although quantitative analysis can be difficult or tedious. Mosaibs ca

constructed from video image sequences to convert the many individual video frames to a
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single still image representing the entire imaged tract. Mosaic swagebe generated
from underwater video footage of the seafloor collected by a diver or by towedacame
using a featureless coregistration technique involving frequency-domain pngaafss
images to automatically solve for affine motion parameters, translationonoéad
zoom (Rzhanov et al., 2000). Each frame gets coregistered to the previous frame and its
magnification is adjusted to the previous zoom level. Using this approach the mosaic has
a uniform distance scale throughout (unless errors accumulate).

Mosaics representing tens of meters or more of seafloor have been cedstruct
and allow detection, identification, and measurement of large epifauna, large
bioturbational features, substrate transitions, and seafloor attributes impordaoustics
at spatial scales inherent to standard MBES and SSS deployments. Mosaictonstr
does not necessarily require positioning data, although positioning data asanetas
placement of the mosaics within geospatial maps and for interpretation péctres

sonar data maps.

1.2.9. Background Summary

It is clear that acoustic data from multibeam echosounders and sidescan sonars ar
indicative of physical habitat attributes, and only rarely will directbvute biological
attributes. Some exceptions to that are when large organisms with distinotirgti@c
response are present (e.g., kelp forests, dense seagrass beds, schools of fisd)y, Gene
however, MBES and SSS are used to acquire seafloor elevation and backscatter intensit
data. Acoustic backscatter intensity can be related to substrate composdiseatioor
elevation patterns relate to morphology that can indicate formation processesteHowe

many interactions complicate those relationships. It is my intent to exploeecfdhose
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complications and consider how we can interpret seafloor acoustic data in terms of

biological habitat.

1.3. Overview of Data and Methods

The primary data set used for this research are MBES bathymetry and
backscatter data from the Portsmouth Harbor Common Dataset (Mayer andnBaldwi
2001), collected in the mouth of the Piscataqua River Estuary mouth to construct seafloor
maps that relate morphology to composition. Specifically, bathymetry data were
collected with Reson Seabat 8125 and Reson Seabat 8101 multibeam echosounder
systems. Backscatter data originated from a Kongsberg-Simrad EM30@@Beam
echosounder, and a Klein 5500 sidescan sonar.

Delineation and classification of these data sets were done separatelgwdisd re
were compared to an existing substrate map and data (Ward, 1995). Existingesubstra
data (Ward, 1995) were used to provide initial hypothetical “physical habitat sfiodel
(PHM) and “hypothetical habitat maps” (HHM). The PHMs and existing watiermn
data (temperature, salinity) were used to generate habitat stytadalkx (HSI) maps for
selected species. A hypothetical biological habitat map was gehtwgieedict how the
dominant infaunal communities were distributed.

Ground-truth data include remote and diver-deployed video and still cameras and
direct substrate and infaunal samples, to test the validity of the hypotlatibgIHSI
and the predicted faunal maps. Specific attention was made to regions whesgdltwe s
morphology and backscatter maps differed because those regions might indicate

transitions in composition and processes. Remote and diver-deployed imagengedere
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to assess habitat-specific faunal occurrences and densities, foedeletectable species

and biogenic features.

1.3.1. Data Sources
The work described in this thesis includes the following data: bathymetry,
backscatter, optical imagery, and substrate and biological samples. The poonags

of data are listed below.

1.3.2. Bathymetry data

Bathymetry data consists of portions of two of the multibeam echosounder
surveys from the Portsmouth Harbor Common Dataset (Mayer and Baldwin, 2001): the
Reson 8101 dataset and the Reson 8125 dataset.

The Reson SeaBat 8125 multibeam echosounder data were collected by Science
Applications International Corporation (SAIC) aboard the UNH vesselGQR/astal
Surveyorin July, 2001. The 8125 operates at a frequency of 455 kHz, has a 120 degree
swath width, and uses focused beamforming to achieve 240 beams with across-track
beamwidths of 0.5 degrees and along-track beamwidtideffee (Reson, unpub. 1).
Depth resolution is stated to be 6 mm; swath coverage for the 8125 ranges from 3.5to0 1.7
times water depth in depths of 15 to 90 m (Reson, 2002). Position, heading, and attitude
information for the 8125 survey was measured using an Applanix POS MV 320
(Positioning and Orientation System for Marine Vessels) inertial motion uaiia \iere
“cleaned” (selection and removal of data artifacts and false-bottom soghdowprding
to hydrographic processing standards and the data were gridded at variougssegles
CARIS HIPS (Hydrographic Information Processing System softwaregsal

Systems, Fredericton, New Brunswick, Canada).
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The Reson 8101 data were collected by the National Oceanic and Atmospheric
Administration (NOAA) from launches deployed from the NOAA sWiiting, in
November, 2000. The Reson 8101 operates at 240 kHz, has a 150 degree swath width
and forms 101 beams with beamwidths of 1.5 degrees, and has a range resolution of 1.25
cm (Reson, unpub.2). Position, heading, and attitude for the Reson 8101 survey were
measured using an Applanix POS MV 320. Data from a doppler speed log and a surface
sound-velocimeter were logged to determine sound propagation speed. CTD (Seacat)
casts were taken from a separate boat at four sites, with a cast ateeagbryitwo
hours. Reson 8101 data were “cleaned” according to hydrographic processingdstanda

and the data were gridded using CARIS HIPS software.

1.3.3. Acoustic backscatter data

Backscatter data from a Simrad EM3000 multibeam echosounder and a Klein
5500 sidescan sonar were also used. The Simrad EM3000 data were collected by Simrad
aboard the UNH vessel R®Woastal Surveygiin June, 2000. The Simrad EM3000
operates at a frequency of 300 KHz and forms 127 beams with dimensionshyf 1.5
degrees. Spacing between beams is 0.9 degrees, generating overlapping beams.

The Klein 5500 “multibeam sidescan” sonar survey was conducted by NOAA
from launches deployed from the NOAA siWhiting The Klein 5500 towfish was
mounted directly to the hull of a survey launch-vessel. The Klein 5500 operates at a
frequency of 455 kHz, and uses 5 steered and focused beams per side (Klein Associate

Inc., 2003).
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1.3.4. Seafloor video imagery data

Underwater video cameras were deployed by divers and remotely from
vessels to collect optical seafloor imagery. Two underwater video camerasised.
One video camera was a Sony TRV-310 digital handycam with an underwater housing.
lllumination sources for the TRV-310 included ambient lighting, an LED array, and a
100-W halogen lamp. The TRV-310 was deployed by divers as well as attached to a
frame and deployed from the vessel to act as a drift camera. The aldietmine the
position of diver-deployed video was limited to time synchronization with a vessel
positioning system clock and required that the diver be in a known position relative to the
vessel. That method was not very reliable and resulted in high uncertainty of diver-
deployed camera position. Using the video camera attached to a frame amd loyve
line or cable from the vessel during slow drift provides for higher positioning agcura
The camera in the vessel-drift mode is deployed vertically below the aesktie
offsets to the GPS antenna(s) were measured. The primary positional uncestaias
to the scope of the line to the camera.

The second video camera was a Deep Sea Power and Light (DSPL) model 2050
video camera. This camera was used as part of a large, frame-based dykieand
Camera) with remote power supply and with the capability to transmit the vide® to t
vessel. The lighting for the Hubbard Camera system consists of two videoesynetr
strobe lights that are capable of reducing motion effects. The limitationsldbbiErd
Camera system are the requirement of a relatively large vessel aneédhfeme
operational personnel. The benefits include better positioning than for a diver-deployed

camera as well as the potential to eliminate motion artifacts from ey

21



Positioning for the Hubbard camera has a level of uncertainty similar toiftheadrera
deployment, but the Hubbard camera can be deployed at higher speeds, thenéty cove
more seafloor.

The DSPL camera also can be deployed on a small towfish (Sea Sciences) that
was modified with runners for use as a sled in case bottom-contact occurred. However,
the lighting for the camera on the towfish is a limiting factor because bkigat at
which the towfish passed above the bottom. The DSPL video quality is mediocre and the
CCD sensor tended to be oversensitive to blue wavelengths until factory adjustiment.
positioning of the towfish was also problematic and generally even lesde¢han
diver positioning.

1.3.5. Substrate and biology sample data

Sediments were collected using either a box corer or a Shipek grab
sampler. The box corer has a 25-by-25 cm (0.063%0ox. The Shipek grab sampler
has a scoop 10.2 cm deep, 19.8 cm wide, and 19.8 cm long, and a capacity of 3 L.
Several diver cores (10 cm diameter Plexiglas tube) were collecteahpbesspecific
substrates or fauna.

Information on faunal occurrence, density, and identification were obtained using

the video imagery data.

1.3.6. A note on positioning data

Uncertainty of positions for ground-truth samples or imagery affect the
georeferencing of the data. Ground-truth samples or imagery collectedibgsinot
rigidly mounted to the vessel and not fixed in relation to the position of the GPS antenna

are subject to positional uncertainty. If ground-truth data cannot be properly
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georeferenced, then their worth may be diminished. Georeferencingagors
particularly acute when ground truthing shallow-water multibeam data becaihge of

high spatial resolution achievable. Shallow-water multibeam systemesszue
decimeter-scale features; features that may be relevant to individiaaisms.

Uncertainty in positioning of the ground-truth data can lead to inaccurate assesfm

the seafloor in terms of biological habitat or geological attributes. dmagsaicing
technigues may help overcome positioning errors of cameras by determiningutie ac
motion of the camera along a track. However, unless objects with known positions are

imaged, there will still be uncertainty associated with the absolute pasitiba track.
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CHAPTER 2

2. SEAFLOOR SEGMENTATION USING TEXTURE

2.1. Citation

Published in Journal of Experimental Marine Biology and Ecology, volumes 285/286,
pages 355-370.

Citation:

Cutter, G. R., Rzhanov, Y., Mayer, L. A., 2003. Automated segmentation of seafloor

bathymetry from multibeam echosounder data using local Fourier histogranetextur
features. Journal of Experimental Marine Biology and Ecology, 285/286, 355-370.

2.2. Abstract

Patterns of seafloor topography represent regions of geomorphological feature
types and the physiography governing the spatial distributions of benthic fiabitat
Topographic variability can be considered seafloor texture and can be remotety lsgns
acoustic and optical devices. Benthic habitat delineations often involve distinctions
based on seafloor morphology and composition derived from acoustic data maps that are
ground-truthed by optical imaging tools. Habitat delineations can be done rganuall
although automation of the procedure could provide more objectivity and reproducible
map products. Recently, a technique using Fourier transforms to produce textuesfea

called local Fourier histograms (LFH) has been used successfully tifyctéasdard
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textures in grayscale images and automatically retrieve digitaemfrom archives
according to texture content (Zhou et al., 2001). A modified form of that approach
implemented by varying the spatial scales at which local Fourier histsgrare
calculated. A modified LFH texture feature classification techniqieapalied to
multibeam echosounder (MBES) data from Piscataqua River, New Hampshire, ddSA, f
automatic delineation of a seafloor topographic map into regions of distinct
geomorphology and apparent benthic habitats. Automated segmentations were done by
the LFH method on one-meter gridded MBES data, applying the local Founigfiotra,
used to generate the LFH, at spatial scales from one to five meters. Seloem seaf
texture classes were identified, corresponding to the primary subspraseaiyd
configurations in the study area as well as some previously unidentified ragns
transitional zones. The texture regions serve as a physical habitat oratiel $eafloor,

a basis for predicting benthic faunal inhabitants, their areal distributions, raimyses

sampling strata for ground truthing efforts.

2.3. Introduction

Topographic variability of the seafloor influences benthic community structure
and ecological processes at many spatial scales (Bourget et al., 19%%1 @s
Bourget, 1997; Guichard and Bourget, 1998; Menge and Olson, 1990; Zajac, 2001).
Traditionally, topographic variability has been described based on maps constroicte
acoustic (echosounder or sidescan sonar) data, whereas biogenic featuresmave be
described using optical data from still or motion imaging devices. The ongrriesult

is a mismatch of spatial scales between data, measurements, and ini@npreteafloor
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properties. Recent developments in multibeam echosounding (MBES) however, have
resulted in detailed acoustic surveys that provide an unprecedented view of lter s¢af

a broad range of spatial scales. Using MBES data, digital elevation mo&dg 6r

digital terrain maps (DTM), which are two-dimensional rasterized dptagenting

elevation of the seafloor or depth, are produced that depict nearly continuous-coverage
depth measurements of the seafloor and reveal distinguishable texture pladierns t
represent topographic variation patterns, or geomorphological regions. In shatiew w
(tens of meters deep) features with vertical dimensions of centimater®azontal
dimensions of decimeters to meters can generally be distinguished, such tiahiamabi
microhabitat characteristics are easily discriminated.

Benthic habitat delineation has recently become a worldwide priority fanoce
science, and MBES seafloor maps appear to provide the best basis for initiakidelinea
of the seafloor into geological and geomorphological regions (Mayer et al., 1899eT
al., 1999; Kostylev et al., 2001) . In turn, a physical habitat model developed by
interpretation of those regions can be used to model distributions of benthic biological
resources using any available biological or fisheries data, organismaselsteraction
models, or direct sampling. Recent studies have utilized MBES and acoustiabiacksc
data to provide geological (Todd et al., 1999) and biological habitat (Kostylev et al.,
2001) maps, but their delineations were done manually. Manual segmentation (by visual
appearance) and delineation are inherently subjective and therefore can beieaccur
Simple approaches to automated segmentation based on first-order statistics of
topographic data may be sufficient in some cases, but often fail to distingeasivath

different biogeological processes, morphology or composition. Thus, thereseressl
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for a robust, automated delineation approach that is accurate, unbiased, and fast,
especially for datasets that can contain billions of measurements.

One possible approach to automating the delineation of seafloor regions involves
texture analysis of MBES-derived DTM'’s representing seafloor topograpay 8ame
common texture analysis techniques include grayscale co-occurrenmesand Gabor
functions (Ware, 2000; Zhou et al., 2001). In particular, Gabor filters are based on
models of human vision perception of texture; thus Gabor functions can be used to detect
and segment grayscale image textures in a manner similar to that of the hsuan vi
system (Ware, 2000). However, human perception is biased, and digital terrain models
of the seafloor can incorporate differences due to data projections or nongtanda
exaggerations incorporated for visual effect, thus reinforcing the need foea mor
objective methodology, less dependent on human perception.

One approach that was recently developed for texture feature construeson us
local Fourier transforms (FT) to accurately describe the local spgatabution of values
(Zhou et al., 2001). It has been shown that this technique provides a reliable means of
classification of grayscale texture images (Brodatz texturesghss automatic retrieval
of images from digital archives according to texture content. The textivec®ea
produced by the local FT technique, called local Fourier histograms (LFH), pedfasme
well or better than grayscale co-occurrence matrix features for aitanaasification of
13 Brodatz textures. In addition, Zhou et al. (2001) demonstrated that LFH texture
features performed similarly to Gabor features for automated rdtaeBaodatz texture
images, such that the average overall recognition ratio for 108 Brodatz sexaige

70.56% for LFH and 69.63% for Gabor features. A technique incorporating texture
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features similar to LFH, but denoted local spectral histograms (LSH)ewastly
developed by Liu et al. (2001) that might be more flexible, but also more subjective, in
that it involves user choice of a set of filtering operations prior to gengréie texture
features.

We have applied the LFH texture features for automated classification and
segmentation of the seafloor. A modified form of the LFH texture featussifotation
technique was implemented by varying the spatial scales used to calcelkteal
Fourier transforms. The technique was applied to multibeam echosounder data for
automatic segmentation of a seafloor elevation map into regions of distinct
geomorphology and apparent benthic habitats. The accuracy of segmentation results
were verified using historical sediment sample data and sediment mapk (\82%), as

well as underwater video imagery and diver observations.

2.4. Study Area

The study area is located in the mouth of the Piscataqua River, a well-mixed
estuary (Swift et al., 1996) flowing between New Hampshire and Maine, U§&réFi
2.1) and exchanging water with the Gulf of Maine. The freshwater supply to the
Piscataqua River originates in a watershed in southeast New Hampshiraiaedaht
includes six tributaries, three of which flow first into Great Bay, althaagth of the
tributaries are dammed at some point. The total watershed area is 233fHem
channel in the river mouth is oriented north-south, then abruptly turns to near due west
at Fort Point, NH. The Piscataqua is a tidally dominated system, with tidatuadepl

(half of the tidal range) of 1.3 m near the study area (Swift and Brown, 1983). Averag
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total discharges for all the tributaries combined is about*32 fShort, 1992).
Maximum average cross-section and time-averaged current speeds neanytheestud
are 0.5 m'$ (spring) and 0.4 mi’s(neap) (Swift et al., 1996). However in narrower
parts of the river upstream, current speeds can reach 2'Z3wit and Brown, 1983)
to 3.1 m & (Short, 1992).

Primary substrates in the Piscataqua River-mouth study area wer@ughgvi
mapped by sample data from sediment cores (Ward, 1995) and consist of intertidal and
subtidal bedrock, gravelly channel sediments, and a sandy sediment regithenear
center of the channel. The sandy central channel region was recentlyioketeinom
the MBES data and by diver and video observations to be a rippled sand wave field,
consisting of 5-m to 10-m wavelength, 0.5-m to 1-m height sand waves composed of fine

to medium sand and fine shell hash.

2.5. Methods

2.5.1. Dataset

The dataset used for developing an automated segmentation procedure was a one-
meter gridded surface representing the bathymetry in the mouth of thiEa&iscRiver,
New Hampshire, USA (Figure 2.2). The gridded bathymetry was constructgddasa
collected with a Reson 8125 multibeam echosounder aboard thedaltal Surveyor
(UNH) by Science Applications International Corporation (SAIC) as paheoShallow
Water Survey 2001 Common Dataset (see Mayer and Baldwin, 2001). Positioning was
accomplished using an Applanix POS MV 320 (Positioning and Orientation System for

Marine Vessels). Data were cleaned according to hydrographic staaddrtte grid
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was constructed using HIPS (Hydrographic Information Processing Systpynight
CARIS, New Brunswick, Canada); data are presented on a Universal Transverse
Mercator (UTM) projection, zone 19 north. The dataset covered 839 by 2034 meters,
with the center of the lower left corner grid cell originating at UNIbtthing 4768915 m,

Easting 360918 m (latitude 43.0602° North, longitude 70.707° West).

2.5.2. LFH texture features

| use a modified implementation of the local Fourier histogram (LFH) texture
analysis and discrimination technique described by Zhou et al. (2001). The pmpcessin
procedure involved calculating a local FT for every data point (grid cell, pixelds).

The Fourier coefficients characterize the spatial frequencies piegbetsignal, i.e. the
signal’s roughness. Zhou et al. (2001) describe texture features by consiyitite
immediate vicinity of a node in two-dimensional rasterized data. On a sqitireugh
as in grayscale images and DTMs, that vicinity consists of eight neaighbors,
enumerated consecutively to form a one-dimensional signal. Fouriercea@siof this
signal reflect local isotropic roughness of the area around the node.

Eight Fourier coefficients from the eight-element, one-dimensionallsigaabe
interpreted as four magnitude and four phase values. Only magnitudes are used for the
LFH texture features. The LFH texture features require spatigratien over a group
of nodes (grid cells). For all nodes in a square block 10 by 10 meters (block sizes of 5 by
5 m and 20 by 20 m were also tested), the Fourier coefficients are calculated, then
accumulated into histograms. A histogram, with eight bins each, is generatechfor ea
magnitude coefficient. Thus, the block of nodes is described by a LFH textune feat

vector with 32 elements formed by concatenating the individual histogramsf@afiite
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vector elements 0, 1, ... 7 contain the histogram for'thm&gnitude coefficients,
elements 8 through 15 contain the histogram for theadgnitude coefficient, etc.). In
addition, the average depth value from the block was removed from coefficient O value
(also known as the direct current or DC value, and representing the mean value of the
series) prior to constructing the histograms in order to eliminatecastif@lated to mean
depth effects.

My implementation allows for varying radii at which the local FT wasiagdpl
and the block-size used to accumulate the LFHs. The modification to Zhou et al. (2001)
was to calculate the Fourier coefficients at not only the nearest neighbpbuataalso
data from a larger neighborhood, combined in a manner (depth averaged for/¢ight
radian angular sectors within a specified radial distance about each reideathtained
the same format input signal to the FT (eight-element, one-dimensional signdl). LF
texture features from the expanded neighborhood describe texture at braéeter Ao
alternative method for examining multiple spatial scale texture usirgwduld be to
use only the eight-nearest-neighbor data, but to apply the LFH to data griddadus var

scales.

2.5.3. Class grouping

Classes were constructed using fuzzy k-means cluster analysis riylares
McBratney, 2000). Seven cluster group classes were chosen after examinaguitsf r
from 4 to 10 classes showed either lack of separation of primary sedimentang refy
Ward (1995) when too few classes were chosen, or excessive patchiness when too many
classes were chosen. The number of classes chosen was meant to provide

correspondence between substrate types for which prior knowledge ¢ixigteristudy
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area, there were four) and additional configurations and transitional zodestdvom

visual inspection of the DTM. Table 2.1 summarizes the classes and areal coaathges
provides general descriptions of the bottom types. In order to provide some assessme
of what the texture classes represent in terms of composition, beyond the
geomorphological properties apparent from visual interpretation of the actaistic

(sand waves and rock), the LFH map was compared to an existing substrate map and dat

from substrate point-samples (Ward, 1995).

2.5.4. Representative LFH texture features

After cluster analysis classification, representative LFH texXaatires were
constructed using all LFHs from each class. Initial representatiMedBure features
included data from all classes, even those determined to be misclassific&iials_FH
representative texture features were constructed using only data freesali@sermined
to represent distinct regions by comparisons with Ward (1995) samples and visual
interpretation of the terrain model, so that LFHs from apparent misclasisifis were
not used in construction of the representative LFHs. The representative lt&ie tex
feature vector was meant to represent only the clear cases wherestebdarky

corresponded to particular substrate configurations.

2.6. Results

The LFH texture feature segmentations of the seafloor corresponded thetevi
various geomorphological and sedimentary regions mapped by Ward (1995) in the study

area, allowing sedimentary classes to be assigned to the regionzlassHication
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results were robust, generating similar results across several spal@s of application
(Figure 2.3). Seven cluster classes were chosen as best representangeti@f
apparent geomorphological features in the study area. Fewer classesléadlyo
different morphologies being assigned membership to the same group andcedlassif
the same, whereas more classes led to subdivisions and excessive patchiness.
Application of LFH to grid-cell nearest neighbors (radius = 1 m) corresponded
directly to the procedure described by Zhou et al. (2001). The resultant map showed
several regions with mixed texture classes. Because more uniform regiboalizas
sought, the neighborhood scales were increased. Results for radii of 1, 3, and 5-m are
shown in Figure 2.3 a-c. With increasing neighborhood scale (radius), more uniform
regions were produced, at the expense of potentially missing small patches of unique
texture class. Using a radius of 1-m, i.e. just the eight nearest neighborsertarg t
feature blocks were considered to be misclassifications because thepeeded in a
homogeneous region of the DTM (particularly obvious in the sand wave field) (Figure
2.3a). Increase of the scale to a radius of 3 m resulted in more consistent regions. The
best balance between regional consistency and oversimplification was producgead usi
radius of 5-m for these data at this grid size. The LFH map produced using a osn radi
was filtered to generate more coherent regions by adopting the majonéyfrah 30-
by-30-m blocks as the new cell value (Figure 2.3). These regions also suggestgsampl
strata for ancillary data collection, and produced a simple map for comparischevit
DTM and analysis within geographic information systems.
Relating the LFH texture feature classes to sediments by comparison to point

sediment sample data and sediment maps (Ward, 1995) showed that LFH class 4
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corresponded to the large sand field. LFH class 5 corresponded to subtidal andlintertida
bedrock. Samples by Ward (1995) in the LFH class 5 regions revealed only saraly gr
and muddy gravelly sand; however, other samples attempted by Ward (1995) in rocky
regions (including one in LFH class 5 region) listed no data because no sample was
retrieved, as would result when the grab sampler landed on rock (Table 2.1). Based on
the Ward (1995) map, all the other classes would be lumped into the gravel class;
however, examination of the individual sediment samples in the LFH study area sho
that the regions delineated according to LFH class 7 were not represenisd by a
sediment samples, only interpolation. LFH classes 1, 2, 3 and 6 were represented by
eleven sediment samples that were primarily composed of sandy grd\gilaelly sand
(Table 2.1).

Total areal coverages of majority-filtered (providing the class mide)classes
ranged from 67,438 fi(class 7) to 219,995 fclass 4) (Table 2.1). Classes 2, 3, 4, and
6 all had coverages on the order of 200,080 Blasses 1, 5, and 7 had coverages on the
order of 100,000 fn Representative LFHs, produced using the mean of all LFHs by
class, showed distinct differences among classes according to distrébotithe various
FT coefficients (Figure 2.4). The distributions of the four Fourier coeffEiesed to
construct the local FT maps and the LFHs were apparent in the LFHs. The seve
different LFH classes varied most by distributions of coefficients 1, 2, andrgtivia
of the distributions of coefficent O were not as pronounced as the other coefficients’
distributions (Figure 2.4). LFH classes 5 and 7 had broad distributions of coefficient O,
the other classes all had narrow coefficient O distributions (Figure 2.4, ItSH bi

through 8). LFH classes 1 and 2 had representative LFHs similar enough td sugges
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consolidation of those classes, except that the distributions of coefficient lligetly s
different (Figure 2.4, LFH bins 9 through 17). Distinctions among the other
representative LFHs reinforce the concept that textural differemts#eccamong
seafloor regions segmented by LFH. None of the four individual coefficienbdisbns
alone showed enough difference across classes to have been used for separation.
Regardless, when the individual histograms were combined as the LFH featore ve
class differences were distinct. Consequently, the texture LFH featpresent

complex spatial variation of seafloor topography.

2.7. Discussion

Geomorphological regions were discriminated with high efficiency usirtg) LF
texture feature classification. Regions distinguished by LFH aralyse suggestive of
substrate type and sediment distributions. Furthermore, LFH maps showed patterns
similar to the relative backscatter intensity map (Figure 2.5) and the selmsap
delineated by Ward (1995). The LFH texture feature classes from theaBist®iver
mouth were determined to represent most simply: rock outcrops, a sand wave and ripple
field, and gravelly channel regions (Table 2.1). Those same regional tgpes w
delineated by Ward (1995) based on core and grab samples and some sidescan-sonar
images. In addition, LFH texture classes existed for transitional regiwhsther bottom
textures suggestive of slightly different geomorphologies that weérer éitmped into
broad substrate classes by Ward (1995) or previously unsampled. Diver observations a
underwater video showed these regions to consist of sandy sediments with large

(typically > 0.5 cm) shell fragments (represented by class 1 and clagsRigsee 2.3).
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The apparent disparity between facies corresponding to LFH textures and datapte
some LFH classes was indicative of two issues: 1) grab samples in rockpaeigions
did not recover the rock itself, either recovering no sample or recovering sediment
interspersed amidst the rocks, and 2) delineations and descriptions of bottom type have
inherent scale-dependent biases that can affect correspondences anoifirgmrmap
different sources and methodologies. In addition, substrate heterogeneitlyilike
accompany any particular seafloor texture; therefore, concise assigohseafloor
composition is not recommended.

Some textural differences appear to represent similar substrates Vatbrdif
roughness configurations that are probably related to sediment transport &ldedat
temporal variations in hydrodynamic effects. Roughness and materigdraase
important factors to benthic organisms, affecting benthic assemblageistraicd
function. A reassessment of organism-sediment interaction (OSI) studieslgycSe
and Butman (1994) emphasized the need to consider hydrodynamics and material
transport in order to strengthen OSI models. If seafloor texture patteraspmord to
material transport and hydrodynamic processes, then regions delineatszaflbgr
texture represent spatial extents of the benthic physical environment witicim av
process occurs at a particular frequency and with a certain intensity.forbgetexture
maps of the seafloor can provide insight about the benthic biological community by not
only revealing physiographic constraints and regionalization of seafldardeagpes, but
also by delimiting areas within with particular hydrodynamic influsncgeafloor
topographic maps analyzed for texture or roughness distributions are subtidgliesa

to the synoptic maps generated by airborne spectrographic techniquesrtolairded
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shallow subtidal water. Although biological attributes of the system and organism
sediment interactions may make the interpretation of spectrographicsedttou
construct synoptic maps more difficult, those attributes may lead to insightshalvotd
remotely sense related processes (Paterson and Black, 1999). Similarkalpdnydi
biological factors influencing seafloor texture at various spatial scalest be studied in
order to accurately assess how and why differences in texture in acoustiofreabtdal
waters indicate differences in substrate characteristics and benthatfhabihose efforts
will likely lead to refinement of the interpretation of acoustic-derivedseamaps and
better methods for seafloor exploration.

The resolution of the Piscataqua River dataset allowed the discrimination of
region types by LFH to much finer scales than previous sediment type delsdadised
primarily upon interpolation of sparse point data. Although apparent associatisins exi
between LFH classes and substrate types, LFH classes are notreijpnpientative of
substrate alone; they represent bottom texture which, in a dynamic estuarioaraeni
such as the Piscataqua River, is generated by interactions among the suistingte
composition, newly delivered sediments, fluid dynamics, and biological modsati

Representative LFHs from correctly classified data, provide feataters that
can then be applied to new bathymetry data. Thus, representative LFHs can serve as
training features representative of particular geomorphologies, and caedéo directly
determine the bottom texture and type for new data. LFH analysis can ajgdibd t
acoustic backscatter data.

The spatial scales of feature variations were important and did cause some

apparent misclassifications, the most obvious were areas with the rock outcropsréhat
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classified as sand wave field. The geometry of the rocks and sand wavasiveas s
enough in those cases to inhibit discrimination by LFH analysis. The apparent
misclassifications’ was used because there may have been a physicidgcdlibasis
for the apparent misclassifications: sediments may have accumulatgutessiens
between rocks or soft-bodied animals and plants may have covered the rocks, there

affecting their morphologies.

2.8. Conclusions

| have developed an automated, objective method for delineating physical benthic
habitats that can be used to model biological habitats prior to sampling the biologica
community, using historical biological data and assumptions about organism-gubstrat
associations. LFH texture feature classification served as the m&oHanidelineation,
and was automated, except for the choices of number of classes and texture spatial-
integration scale. The appropriate scales of application of LFH should benidetse
by optimization procedures, allowing more automation and generalization of the
procedures. In addition, despite the good initial results of LFH texture feature
segmentation of seafloor topography, alternative segmentation techniques and
comparisons to quantitative measures of roughness should be implemented. Areas with
apparent misclassifications should be examined directly to determinehhscter.
When applying the segmentation procedure to new data, an “unknown” or “new” class
should be introduced to allow for textures that do not correspond to the existing LFH
texture features. This will allow exploration and classification of neasangthout

restricting descriptions to only known types.
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The LFH segmentations serve to regionalize seafloor geomorphologicaiseg
by textural pattern; those regions are believed to have charactesisiiinations of
sediments and hydrodynamic conditions. Therefore, LFH segmentations result in a
predicted physical habitat model for the seafloor. That, in turn can be used to peedict t
initial benthic biological habitat model, particularly distributions of priyraenthic
community constituents or functional group types, depending on the detail of prior
knowledge of the biological assemblages in the study area. One of the strengths of
segmentations made using LFHs on MBES-derived bathymetry lies in thay tbil
provide a context for detailed situ seafloor investigation data. On the other hand,
interpretations about the ecosystem made using MBES should incorporate suel detail
data, otherwise the descriptions are still as coarse as the data resolbtisnth&re are
limits to interpretations made using only the MBES seafloor topographyhddtshiould
be addressed by rigorous, accurately georeferenced, and innovative ground truthi
methods. In particular, | seek methods that can provide information about typasesnd r
of changes occuring in the transitions between regions segmented usingrid-H
determine the true local variability of seafloor textures that mightseptdabitat
patchiness. The majority-filtered map provided a simplified and easy to etterpr
regionalization of the seafloor in the study area, although the apparently noisy
representations might be valid for certain attributes. Determination of spadilal-scale
variability could not be done using the Ward (1995) sediment map or sparse samples;
therefore, | suggested a simplified depiction of seafloor region types in oraeoit

speculation without supportive data. For new seafloor explorations, it is likelgvibat
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less ground-truth data will be available; therefore, | believe that nrangaa simple

initial model is a practical approach.
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2.11. Tables for Chapter 2

Table 2.1. Substrate types found in each LFH class region, and total areal covkrages
each LFH class. Substrate classes were based on sediment samplesritdd 095,

with type descriptions in terms of Folk’s (1954) mud, sand, and gravel. Sedimers classe
include sandy gravel (sG), gravelly sand (gS), muddy sand (mS), sand (S), muddy
gravelly sand (mgS); there was one station within class 5 (rocky) wherenptesavere
recovered (NR); no samples were taken (NA) within LFH class 7. Arealtage

(rounded to nearest3nof each LFH texture feature class in the study area is reported, for
raw LFH results (5-m radius, 10-by-10-m block), and majority filtered eéulajority

value in 30-by-30-m block around each grid cell).

Sediment class of

Ward (1995) Majority
samples located in Raw LFH LFH
LFH each LFH class Coverage coverage
Class General Description region (m?) (m?

Smoother sedimented
1 bottom-texture 1 sG, sG, gS, gS 111725 92960

Rougher sedimented

2 bottom-texture 1 gS, sG, mS 187060 182589
3 Smoother sedimented o oo 555G 172785 199122
bottom-texture 2
4 Sand Waves S 221360 219995
5 Rock NR, sG, mgS 111017 126986
Rougher sedimented
6 bottom-texture 2 gsS, gS, sG 185340 216774
7 Steep, smooth NA 61819 67438

marginal slopes

a7



2.12. Fiqures for Chapter 2

vy
45°N Canada ﬂ/

United States

40°N

2 Great Bay
Estuary

Figure 2.1. The study area consisted of a section of subtidal waters isdh@&ua
River, between New Hampshire and Maine, USA. The asterisk in the small map marks
the area enlarged.
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Figure 2.2. Bathymetric digital terrain model (DTM) from the mouth of tked®aqua
River, NH, gridded to 1 meter, UTM projection, zone 19N. Constructed from Reson
8125 multibeam echosounder data, collected by SAIC for NOAA & UNH JHC-CCOM,
July 2000. Shading provided by artificial illumination from the north-northwesst at
elevation angle of 45 degrees.
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Figure 2.3. Segmentation of Piscataqua River mouth bathymetry by locar~ouri
Histogram (LFH) texture feature classification using coeffigénthrough 3 and varying
spatial scales to generate texture features. LFH Texture fedases from a)
neighborhood radius of 1 m, b) neighborhood radius of 3 m, ¢) neighborhood radius of 5
m. d) neighborhood radius of 5 m where the original LFH class value for each sell wa
replaced by majority value (mode) from the surrounding 30-by-30-m block, and LFH
map draped onto bathymetric terrain model surface. Coordinates are in UTM &asting
and Northings, zone 19 north.
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Figure 2.4. Representative histograms for seven LFH texture featitesga m,

block=10 by 10 m) classes from cluster groups. Each successive eight bins repeesent
distribution of an individual local FT magnitude coefficient. Thus, bins 1-8 represent
localFT coefficient O - mean, bins 9-16 represent coefficient 1 magnitude, bins 17-24
represent coefficient 2 magnitude, and bins 25-32 represent coefficient 3 magnitude.
Clustering was done using fuzzy k-means method (Minasny and McBratney, 2000).
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Figure 2.5. Acoustic backscatter mosaic covering part of the study area. cKaeabier
mosaic consists of data from a Klein 5500 sidescan-sonar and a Kongsberg-SirGjad (K-
EM3000 multibeam echosounder system, mosaiced separately, gridded to 1-m (Klein)
and 5-m (K-S), then combined and gray levels adjusted so that both datasets expresent
the same dynamic range. The mosaic from the K-S data is shown over theahtsaic
Klein data that extended farther north and south, but less east and west.
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CHAPTER 3

3. GROUND TRUTHING USING IMAGE MOSAICS

3.1. Citation

To be published in Proceedings Volume from: Symposium on the Effects of Fishing

Activities on Benthic Habitats: Linking Geology, Biology, Socioeconomics, and

Management. Tampa, FL, Nov. 12-14, 2002.

Citation:

Cutter Jr., G. R., Rzhanov, Y., Mayer, L. A. and Grizzle, R. E., In P@&ssind Truthing
Benthic Habitat Characteristics Using Video Mosaic ImalgeBarnes, P. W.,

Thomas, J. P., (Eds.) Benthic habitats and the effects of fishing. Americandssheri
Society, Symposium 41, Bethesda, Maryland.

3.2. Abstract

Subtidal benthic habitats from the Piscataqua River were delineated by an
automated segmentation technique using bathymetry derived from multibeam
echosounder data (Cutter et al., 2003). The map produced by segmentation of seafloor
textures represents a ‘hypothetical benthic habitat map’ that requingsdgiruthing. In
this study, video mosaics were used to ground truth the hypothetical habitat map and to
describe biological features and organism occurrences and densities. Videmsmosai
acquired along two transects in the Piscataqua River were used to deteatesubstr

transitions apparent in the bathymetric map, and to quantitatively assessyjesvef
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distinct sediment conditions, density of megafaunal organisms (lobsters), and

bioturbational features (crab feeding pits).

3.3. Introduction

Benthic habitat mapping efforts have benefited from high-resolution and total-
coverage data from multibeam and sidescan-sonar systems (Kostylev et al., 2001).
However, because of the complex interactions between seafloor composition,rgeomet
and acoustic reflection and backscatter (see Urick, 1983), multibeam and sidegsan ma
must be ground truthed to confirm sedimentological and biological characseristic
Remotely deployed video can be used for ground truthing, but quantitative anafysis c
be difficult or tedious. Mosaics constructed from video-image sequences chmvert t
many individual video frames to a single still image that represents tihe iemiiged
tract.

To map benthic habitats of the Piscataqua River (New Hampshire and Maine)
multibeam bathymetry data were analyzed by Cutter et al. (2003) usanganated
segmentation and classification technique (Figure 3.1) involving classifiaaging local
Fourier histogram (LFH) texture features described by Zhou et al., (2001).
Segmentations of seafloor morphologies from that analysis had good correspdndence
the sediment facies in the study area (Ward, 1995) and to multibeam and sidescan-sona
acoustic-backscatter-intensity datasets. | suggest that the autdiyatassified texture
feature map presented in Cutter et al. (2003) represents a ‘hypothetical bepitaic ha
map’ of the seafloor. The hypothetical habitat map presents the opportunity to test

hypotheses about seafloor characteristics and associated benthic faungyrapérliy
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ground truthed, can be considered a true habitat map. The ability to go from a
‘hypothetical habitat map’ to a true map of the spatial extent and distributimntfic
habitats will be strengthened by the use of other data such as acoustiathacksc
intensity, substrate composition, energy regime, and salinity. Whether or not the
hypothetical habitat map accurately represents the spatial extent aiditist of
benthic habitats might be strengthened by inclusion of such ancillary data tiére be
these key environmental factors can be described, the more likely the ‘Higadthe
habitat map’ will be an accurate representation of biological habitats. HqQweeerif
other environmental data are lacking, a ‘hypothetical habitat map’ can bepsyéb
predict spatial distributions of habitat and seafloor characteristics.

A habitat map requires choice of target species or groups of species thatassoc
and requires ground truthing data to determine how the species occur, are edstahdt
utilize the seafloor. The occurrence and distribution of some species candsedsse
using remote-sensing techniques. For sessile epibenthic megafauna, or tihose wi
limited-motility, video mosaics can be used to assess the presence anglafensit
organisms as a function of seafloor region (i.e., by hypothetical benthic haleitiaesd
from segmentation of gridded seafloor bathymetry (Cutter et al., 2003), thus pgovidi
descriptions of essential fish habitat (EFH) levels 1 and 2 (Able, 1999). EFH level 1
designates habitat-specific occurrence (presence or absence)m$miggdEFH level 2
designates distribution and abundance of organisms (Able, 1999). The purpose of this
work is to demonstrate that an analysis of video mosaics can be used as a grbungd-trut
technique to: (1) determine where apparent transitions of substrates occuse$d) as

occurrence and density of megafauna (the northern lddetaarus americanysand; (3)
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estimate coverages of substrates (bare sediments and microalgsl dagkcrab feeding

pits.

3.4. Data and Methods

Bathymetry data in the study area were collected aboard th€&dstal
Surveyor(UNH) by Science Applications International Corporation (SAIC) using a
Reson 8125 (455 kHz) dynamically focused multibeam echosounder (Mayer and
Baldwin, 2001). Data were cleaned using standard hydrographic processing laggproac
and gridded using a weighted-mean grid with 1-m spatial resolution. Delineations of
seafloor configurations representing apparent benthic habitats were guidnuan
automated segmentation procedure using texture feature classifiggile@ddo the

gridded bathymetry data (Cutter et al., 2003).

3.5. Video Mosaic Imagery

Mosaic images were generated from underwater video footage of treoseafl
collected by diver and by towed camera using a featureless coregnsteghnique
involving frequency domain processing of images to solve automatically for affine
motion parameters, translation, rotation and zoom (Rzhanov et al., 2000). Each frame
was coregistered to the previous frame and its magnification was adjudtedotevious
zoom level. The resulting mosaic has a uniform spatial scale throughout (urdess e
accumulate). After the assembly of mosaics, colors were manually adpusted t
compensate for ambient lighting effects by independently adjusting thesrahthe red,

green and blue channels. Positioning data for the towed camera deployments wer
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provided by differential GPS, and an acoustic transponder positioning system was used
for the diver deployments. Mosaic construction does not require positioning data,
however positioning data are necessary for placement of the mosaics withimdtaghy

and backscatter maps and for the interpretation with respect to bathyneetry a
backscatter maps.

Video image mosaics for this study came from two locations within the stedy ar
described by Cutter et al. (2003). In the northwestern part of the studynaagary for
mosaicing was collected within an experimental enclosure for trackinggtobs
movements (lobster mesocosm). Across the river, to the east of the main channel,

imagery for mosaicing was acquired from a rocky region.

3.6. Results

The video-image mosaic from the rocky region (Figure 3.2) reveals aiwansit
from shelly gravel sediments to boulders and bedrock. The transition observed in the
mosaic is marked in the figure with colors that correspond to the nearest teature f
class regions from the segmented bathymetry map (Figure 3.1). Seeeiatsy
epifaunal sponges, bryozoans, and tunicates are evident on the rocks.

Substrate transitions are visible and are delineations easily mada frasaic of
a rocky region on the eastern side of the river mouth channel (Figure 3.2). Despite t
fact that the mosaic was acquired from what appeared to be a rocky outdrep in t
bathymetry image, various substrates are apparent from the mosaic.s Bamgtael,
shell hash, shell valves, and boulders exist in addition to bedrock. It is evident that a

variety of sediments with a wide range of grain sizes cover portions of thepmsitcr
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Texture feature classification determined that at least two seafidords exist at the

scales of the analysis (1 m to 8 m). The positioning data for the video used to construct
the rocky region mosaic was not precise enough to determine if the transitioeateel

in the mosaic correspond to bathymetric features. The goal for future ohepitsyis to
collect positioning data that allow for accurate georeferencing of the vaegery and
mosaics.

The mosaic from the lobster mesocosm (Figure 3.3) reveals a silty fine sand
substrate occupied by benthic megafaunal lobsteymérus americanysand crabs
(Cancer irroratusand/orC. borealig and large infaunal razor clantsnsis directusand
possibly others). The clams are evident from their siphons and empty shells and were
identified by divers. Large bioturbational pits are apparent, and some apgeatcby
crabs and lobsters. Diver observations suggest that these pits are feedingapétedxc
by crabs in pursuit dt. directus

The two primary goals of the analysis of lobster mesocosm mosaic (Figure 3
were to detect and enumerate occurrences of the lobsters (Homarusausgyiand to
delineate substrate surface conditions apparent according to three claysestingent
with a micro-algal layer coverage; (2) bare sediment, although perhapshaitbw
bioturbation, and; (3) deep biological-excavations. The sediment surface conditions of
the lobster mesocosm are relatively easily distinguished by color. Sedimtie algal
cover is reddish-brown, bare sediment is olive to olive-gray, and deeply bioturbated
sediment is bluish to bluish-gray due to digging and burrowing by crabs and lobsters that

expose the anoxic subsurface sediments.
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3.6.1. Abundance of megafauna in lobster mesocosm video mosaic

Visual analysis of the mosaic accomplishes the first goal of detectithg a
counting lobsters. In the mosaic, seven lobsters were present with more than 50 % of the

body in the image. If only part of a lobster was seen in an image, then it was noticounte

3.6.2. Density of megafauna in lobster mesocosm video mosaic

Because all images were adjusted to the same zoom level during autoorated ¢
registration, and because the beginning of the transect contains a fence \eith) 88
area coved by the mosaic could be estimated. For the portion of the mosaic arfadyzed, t
coverage area was 5.87-and the lobster density was 1.2-nThis high lobster density
reflected the higher frequency of occurrence of lobsters in that part of beweec
Other video sequences suggest a much reduced density in different parts of the
mesocosm.

A density estimate from an analysis of a video sequence requires knowledge of
precise distances traveled between video frames as well as the bambtdrom target
surface. Such information could be provided by a surface positioning system but is
unlikely to produce accurate estimates. Accurate estimates of imaged boggom
require either co-registration of the image series to reproduce theteattreor detailed
instantaneous data from precise motion and position sensors incorporated with the
camera. The latter option requires much more sophistication and expense thareavailabl

to many studies, and was not used here.
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3.6.3. Sediment surface condition in lobster mesocosm video mosaic

By eye, sediment surface condition was difficult to accurately delineate.dTo ai
visual determination of condition, an histogram from each color (RGB) channel of the
image was range-adjusted, eliminating the highest and lowest 1 % of vakldsmSvas
a particular area of the seafloor totally covered by one sediment condition. @overa
areas were manually-delineated and subtle differences might have betnguadisable
and small patches could have been ignored; therefore, surely some errorstimtite®s
exist. The coverage areas for the sediment conditions previously descrileed wer

determined to be:

1. Algal or microbial covered 3.46m
2. Bare or with shallow bioturbation 2.27m
3. Deeply bio-excavated 0.14m

3.7. Discussion

Mosaic image measurements can be made at specific intervals or fetediscr
areas to determine substrate conditions and estimates of organism derasitygart of
the seafloor imaged. The mosaic from the lobster mesocosm shows large biogenic

features such as siphons of the razor cland{rectu3. These siphons were just large

enough to resolve in the mosaic because of the height of the camera from the bottom.

the assessment of infauna or small epifauna or their features (e.g., itesraws),
camera-deployment requirements must be configured to maximize insadatice.
Images must be collected close to the bottom, and lighting must be of sufficiesttinte

and uniform. One disadvantage with a deployment that maximizes resolutidodgsae
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coverage area. Given a fixed field-of-view of the camera, the shorter theoahge
target, the smaller the imaged area. However, close-range imaging sitaller

features to be resolved and larger features to be seen with more claritycalEhansl
resolution of the imagery ultimately determine the level of detail at whigitaha
characteristics can be quantified. In this case | was able to descriafaore]
occurrences and densities as well as megafaunal bioturbational features; those
assessments relate to EFH levels 1 and 2 (Able, 1999). However, the same imagery

cannot be used to assess occurrence (EFH level 1) of macrofauna or smallsmsgani

3.7.1. Issues related to optical ground truthing

A fundamental issue in habitat classification is that standard optical syegeh
as discrete sample seafloor photographs that typically imageot less, do not directly
correspond to acoustically-imaged features because of resolution diseettesn
acoustical and optical systems. How well the photographic images represerst wha
sensed by the sonar cannot be accurately determined unless the opticakpaagee
same spatial scales as the acoustic data. Videography and video mycs@aost-
effective means (compared to other optical imaging techniques such asnkseah) to
provide optical seafloor imagery that can represent spatial scalepoowiey) to those
of acoustic footprints (though perhaps not in all directions). It is unlikely that talogi
features or small bathymetric features will have acoustic responsesditarly
correlated to optical representations. Because feature-to-featuespmrdence between
acoustic and optical sensing is difficult, co-variability should be examined ovancks
or areas. Video mosaics provide optical image data that span spatial lsatabes the

achieved with some acoustic systems.
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Why not simply acquire video or photos at greater heights above the seafloor
because greater camera-target distance would produce a larger imagedJacerwater
optical imagery is limited by water-column conditions, primarily relateattenuation of
light by suspended particles. This light scattering effect is most prorimceastal
waters, but exists throughout the oceans to some degree. Even when particle
concentrations are low, light attenuation through clear seawater limisstaace and
therefore the area that can be imaged reliably. In the deep sea or othemvaters
benthic boundary layer turbidity can be minimal, the intensity of artificiat Bgurces

and camera image receptors sensitivity and resolution are limitations.

3.8. Conclusions

Video mosaics provide a cost effective way of providing large areal-ageer
with high resolution and are an appropriate tool to ground truth acoustic data. It can be
difficult to keep track of features or organisms seen in only part of video imhgss; t
can be identified easily in mosaiced images. To achieve accurate counts ofnosgamis
seafloor features from analysis of video imagery, care must be taken to éastne t
data represent non-overlapping fields-of-view. Mosaics eliminate the meepeatedly
review portions of a video sequence to define sample areas that do not overlap by
showing the entire coverage area. Mosaics can facilitate interpnetdgprocesses
occurring at spatial-scales not clearly evident in individual video intageet, and

expand the capabilities of characterization using a common ground-truthing tool.
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3.11. Fiqures for Chapter 3

Figure 3.1. Section of the seafloor (980 by 630 m) in the mouth of the Piscataqua River,
part of which was delineated using automated segmentation technique involving a
modified implementation of local Fourier histogram texture featureititzggon applied

to gridded bathymetry data from a Reson 8125 (455 kHz) multibeam echosounder (Cutter
et al., in press). Seven hypothesized seafloor habitat classes resultirigegrom
segmentation are colored in the figure. A marks the location of the transeetvidesy

for the rocky region mosaic (Figure 3.2) was acquired, and B marks the locatien of
lobster mesocosm experimental enclosure mosaic (Figure 3.3).
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Figure 3.2. Video mosaic image showing the rocky region. The transition marked in t
mosaic corresponds to the nearest boundary for texture feature class regigribel

transect and represents transition from shelly gravelly sediments thedth

boulders. Several species of sponges, bryozoans and tunicates are evident on the rocks.
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Figure 3.3. Video mosaic image from the lobster mesocosm. Lobdteraus
americanuy are labeled with L; 1 is sediment with a micro-algal layer covemg®?2 is
bare sediment, although perhaps shallow bioturbated; and 3 is deep bioturbated
excavations interpreted as crab feeding pits.
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CHAPTER 4

4. SEAFLOOR MICROTOPOGRAPHICAL ROUGHNESS
SPECTRA

4.1. Citation

Submitted, Dec. 2004, to: The Journal of Marine Systems.
Citation:

Cutter Jr., G. R., Submitte8eafloor roughness spectra from sediment profile images.
The Journal of Marine Systems.

4.2. Abstract

Seafloor roughness spectra were calculated for 34 sediment profilesiif&i)l)
from nine sites on the continental shelf off northern California (Eel Margin). tlidg s
area spanned nearshore sands, a transitional region, and a mid-shelf flood deposit
composed of sediment that ranged from sediments from sands to clays. Sediment-w
interface (SWI) profiles were extracted by manually tracingrterface from digitized
sediment profile images, then converting the trace to a one-dimensional a\een&s of
elevation measurements. Sample intervals were about 0.014 cm and each S\Wiedata se
spanned a distance of 14 cm. The method reported in Briggs (1989) was used to calculate
spectra and spectral slope and intercept parameters. Although SPI roughriless prof

length scales and sampling intervals were about an order-of-magnitude shaallthose
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generated from close-range stereo photogrammetry, SPI 1-dimensiartedisgiepes and
intercepts were similar to those derived from stereo photographs (Briggs, 1989). Mea
spectral slopes (by site) ranged from -2.05 to -2.60, with an overall weighted m@an sl
of -2.44. Spectral intercepts were also similar to published values with an overall
weighted mean of 0.0002, except in the case where the epibiota were considered to be part
of the interface profile. This case produced an intercept two orders-of-olatger
than that from an interface profile that excluded the epibiota, as well agartagnitude
slope. The powdaw scaling of seafloor microtopographical roughness distributions
appears to extend into scales of roughness represented by sediment pagie fion this
study area, and is similar to scaling for lower spatial-frequen@hrass-element
distributions. Roughness at SPI scales (mm to dm) affects the responses af aewast
energy used for remote sensing of the seafloor. Sediment profile imagderé&ean be

useful for examining seafloor bio-geoacoustic properties.

4.3. Introduction

4.3.1. Background

A sediment profile imagery (SPI) camera system collects imaigesrtical cross-
sections of the surficial seafloor sediments (Figure 4.1). SPI images detaitd about
the sediment type, fabric, sedimentary layers, mixing depth, infauna, epifaniogidail
features, microtopographical roughness and habitat quality (see, for insRimoads
and Cande, 1971; Rhoads and Germano, 1982 & 1986; Diaz and Schaffner, 1988; Cutter

and Diaz, 2000; Diaz et al., 2003).
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The sediment profile images (SPI) used for this study were previouslyyised b
Cutter and Diaz (2000) to investigate a flood deposit on the northern California
continental shelf. Cutter and Diaz (2000) collected SPI from a transect ofib@sstat
spanning from 28-m to 83-m water depth (Figure 4.2), a transect approximategdalig
with “Transect S” used during the STRATAFORM-1995 Eel Margin study @\igr
and Kravitz, 1996) and by Richardson et al. (2002). Cutter and Diaz (2000) described a
flood deposit, a transitional region, and inshore sands in the SPI transect. The facies
proposed by Cutter and Diaz (2000) were shown to be associated with distinctive
acoustic-backscatter responses (Borgeld et al., 1999; Richardson et al., 2002hand wi
sediment geoacoustic properties including compressional and shear wave sdeeds a

subbottom acoustic penetration depths (Richardson et al., 2002).

4.3.2. SPI and roughness measurements

Typically, the sediment-water-interface roughness from SPI has essured
only as a vertical linear extent, or maximum minus minimum height of th@seafl
interface observed in the image. That measurement is desirable bectagsepte and
appears to provide reasonable estimates for the apparent seafloor-rolgigtbsscale,
Zo, used to calculate seafloor shear stress for modeling sediment-transpoht @\/al.,
1999). However, simple vertical difference measurements do not describe the
distribution of roughness elements. For instance, a single sediment grain on@ slopi
interface could induce the same surface relief measurement produced byitiaé vert
differencing method. Cutter and Diaz (2000) reported the root mean square (RMS)
deviation roughness values for SPI image interfaces. RMS measuremeriteedbsc

distribution of roughness in terms of deviation from a reference plane, but they do not
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convey the spatial frequency distribution for roughness elements. Therefore, it is
possible for an interface with many small roughness features to have &&bén
roughness as an interface with sparse, widely-spaced roughness featurgseciiuen

for an interface elevation series does relate the distribution of roughnesasrote

spatial frequencies. A single model with two parameters can be used to describe
roughness spectra for isotropic roughness. Two-parameter models have begn used b
Fox and Hayes (1985), Briggs (1989), Jackson and Briggs (1992), Jackson et al. (1996),
and Briggs e al. (2002) for 1-D spectra and by Lyons et al. (2002) and Pouliquen et al.

(2002) for 2-d spectra.

4.3.3. Eel shelf roughness

Along the SPI transect from the Eel shelf, mean RMS roughness for
sediment-water-interface profiles from SPI was 0.55 cm Q.3 cm) for the inshore
sands (28-m to 36-m water depth) with rippled very fine to fine sand, 0.37 €1@.15
cm) for the transitional region (43-m to 55-m water depth), and 0.32 en® (06 cm) for
the muddy flood deposit regions (Cutter and Diaz, 2000). Wright et al. (1999) reported
roughness measurements as sediment relief determined from SPI, asisevastical
difference between maximum and minimum elevations in the seafloor ierfac
measured in SPI, and roughness lengths calculated from the measured bottom-boundary
layer flow and shear velocity relationships. Interestingly, the simdiensat relief
measurements corresponded closely to apparent roughness estimates el teomi
inversion of boundary layer flow properties. Table 2 of Wright et al. (1999) repdads z
a site in 6am water depth as 1.0 cm, and 0.8 cm for a site im ¥@ater depth, and Cutter

(1997) determined surface relief from SPIto be 1.3 cm for a a statiominnger depth
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(near the instrumented Virginia Institute of Marine Science tripod miegsilow
properties) and 0.9 cm for a 64.m station. However, Wright et al. (1999) had flow-based
apparent roughness estimates for only two sites (60-m amdwédter depths); therefore,

the relationship might not be generally applicable.

4.3.4. Acoustic wavelength scales of SPI

Because we are trying to make spectral estimates applicable tmseafbustic
data, we consider the acoustic wavelength scales of SPI. The seafldes gxifacted
from SPI as digitized here had a sample interval of approximately 0.014 mm and length
of 150 mm, providing a resolution of about 0.028 mm and-katies length of
approximately 75 mm. Scales of roughness important to acoustic wave respenses ar
considered to be 0/1to 10/ (Greaves and Stephen, 2000) wheie the wavelength of
the acoustic signal. If 0.3 mm and 75 mm are used as the lower and upper bounds for the
wavelength scale ranges, then the associated acoustic wavelengghwsaat be [0.4 :
/ :10/],0or [0.3 mm : 3.0 mm : 30.0 mm] and [0.75 mm : 7.5 mm : 75 mm]. Assuming
transmission through seawater with sound speeof 500 m/s, the highest relevant
frequenciegf = c¢//) would be 500 kHz (fof = 3 mm) and 200 kHz (fof = 7.5 mm).
Therefore, SPI roughness profiles, capable of resolving roughness feathrksgth
scales of 0.3 to 75.0 mm, are directly relevant to the interaction of acoustic wewves w
the seafloor for frequencies from about 200 kHz to 500 kHz. These frequencies are
typical of shallow-water multibeam echosounders and sidescan sonardlyDirec
resolving sand grains, pebbles, or cobbles (sediments with dimensions in the whveleng

scale range) using typical multibeam echosounders or sidescan-sonareadistat. r
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Rather, sediments and features in that size range should contribute to the behavior of the

scattered acoustic waves.

4.3.5. Seafloor roughness spectra

Seafloor roughness spectra have been estimated for very low spgtiahicees
(and large spatial scales) using deep-sea bathyneiryrox and Hayes, 1985; Fox,

1996) and acoustic backscatter data (Dziak et al., 1993; Matsumoto et al., 1993), and for
high spatial frequencies using seafloor stereo photogrammetry or other m@&taods

et al., 1988; Briggs, 1989; Stanic et al.,1989; Jackson and Briggs, 1992; Jackson et al.,
1996; Briggs et al., 2002; Lyons et al., 2002; Pouliquen et al., 2002). Previous works
describing seafloor roughness spectra have reported spectra forfspatiahcies as

high as 5 cycles/cm (Briggs et al., 2002). This study uses data derived frgmofiE$
allowing estimation of one-dimensional (1-D) roughness spectra withinrne cd
approximately 0.07 cycles/cm (~14 cm) to more than 30 cycles/cm (~0.03 cm).

Fox (1996) used two-dimensional (2-D) spectra to describe seafloor roughness for
deep-sea bathymetry based on a four-parameter model, where the two additional
parameters provided estimates of anisotropy and peaks in amplitude spectraan smdi
slope and amplitude. Lyons et al. (2002) used 2-D spectra from seafloor digiat ster
photos and modeled the roughness using a two-component model that incorporates
statistical descriptions of the anisotropic, quasi-periodic sand ripples in additioa 1-

D power law model for isotropic components.
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4.3.6. Terminology

Studies using spectral models to describe seafloor roughness have used different
methodologies and terminology. Most studies of seafloor spectral roughness #ssum
roughness can be modeled according to a power law of the form

W(k)= k
Where W(K) represents the power spectral density as a function of sgafiedricy
(wavenumber), k (cycles per arbitrary length urgtlgpresents the spectral exponent, and
spectral strengthy, represents the value of the spectrum at a specified reference
wavenumber (see Fox and Hayes, 1985; Jackson et al, 1986; Lyons et al, 2002). Similar
or equivalent parameters can be found with different names in different studies, for
instance wis used to represent spectral strength in the APL-UW (1994) model. The
parameters “amplitude proportionality”, “spectral strength”, “speciifakt”, and
“spectral intercept” are related. In addition, “spectral slope”, “sdest@onent”, and
“roll-off” are related. The “slope” and “intercept” parameters are fliaear models fit
by regressing spectral variance on spatial frequency.

Fox and Hayes (1985) and Fox (1996) use amplitude spectra, whereas most other
studies use power spectra (amplitude is the square-root of power), and some studies
report 2-D spectral parameter estimates, even though they were edtiroat 1-D
spectra. Therefore, parameter values from different studies cannot by doegtared
unless adjusted to common form. Slope parameters are simpler to adjust thaptiaterce
offset parameters because offsets are particular to a specified Bpguiency, usually
defined as a spatial frequency of #01-cm. The spatial scales (spatial frequency bands)

described in studies of deep-sea bathymetry do not overlap scales repressetHtbby
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photographs, and therefore do not share common reference spatial frequency for the
intercept or offset parameters. Extrapolation to 1-cm spatial frequerexyuised to
make intercept or offset parameters comparable.

The terms for the spectral parameters estimated here, spectral sicypeetnal
intercept, were used in accordance with Stanic et al. (1988), Briggs (1989), &nic e
(1989), Jackson and Briggs (1992), Jackson et al. (1996), and Briggs et al. (2002).
Spectral slope as calculated here is related to the spectral slope padiriek and
Hayes (1985), and the spectral intercept parameter reported here iDasatothe
proportionality constant (&) of Fox and Hayes (1985). However, a effectefaigsents
an intercept of the amplitude spectrum at a spatial frequency of 1 km, wirereas
spectral intercept here represents the power spectrum at a spatial fyegfukicm.

APL-UW (1994), Jackson et al. (1986), Lyons et al. (2002), Pouliquen et al.
(2002) and Sternlicht and de Moustier (2003) use two-dimensional forms of the spectral
slope and intercept parameters, called spectral expapemd spectral strength fver
b) in accordance with the composite roughness acoustic-backscatter model oh &cks
al. (1986). The two-dimensional spectral parameter values summarizedrlicstand
de Moustier (2003) were derived from exponents of 1-D spectra from Jackson et al.
(1986), Stanic et al. (1988), Briggs (1989), Stanic et al. (1989), Jackson and Briggs
(1992), and Jackson et al. (1996). Spectral exponent can be converted from one-

dimensional ¢) to two-dimensionalgd,) form by

@=g+1
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(APL-UW, 1994). The “spectral exponent” in the 2-D form reported in APL-UW (1994)
and Jackson et al. (1986) is the negative of the one-dimensional spectral slope value plus
one:

& = -Slopgpec-1o+ 1.
Two-dimensional spectral strength Or w,) is a function of one-dimensional spectral
strength (1) and the 2-D spectral exponegi)( according to:

1=p" [(@D)2] o (@/2)

where is the gamma function (Jackson et al., 1986).

In this study, roughness spectra are estimated for seafloor profilastegdtfrom
the SPI images based on the method described by Briggs (1989). These one-dimensional
spectral parameter results could be converted to two-dimensional forms in order to
provide spectral parameter estimates in accordance with those used by acodsts
such as Jackson et al. (1986) and APL-UW (1994). This study reports the values of the
parameters called here spectral slope and intercept directhatsiifnom SPI spectra. .
The spectral slope parameter effectively relates the relativelndidgn of low- to high-
frequency roughness, such that more negative spectral slope indicates dowiinbece

low frequencies relative to high frequencies.

4.4. Methods

4.4.1. Study area
Images from nine of the ten SPI stations (Table 4.1) occupied by Cutter and Diaz

(2000) were used for spectral roughness estimation. The stations occupieocatee |
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approximately along the shore-normal “Transect S” used during the STRARM-

1995 study of the Eel Margin as shown in Figure 4.2.

4.4.2. Images and seafloor profiles

The sediment profile images were collected in December 1995 using a Benthos
model 3731 sediment profiling camera and 100 ASA Fuiji color slide film. The slides
were digitized and seafloor profiles were extracted by manually grédoesediment-
water-interface apparent at the profile camera prism window. Smallgbdints interface
in the digitized SPI images were magnified in order to maximize resolutionrek of
manually tracing the interface was a vector with horizontal- and vediitension
coordinates (x,z) that represent a data series with sampling intequals pixel
dimensions of 0.014 mm (Figure 4.3). The data series from SPI seafloor profiees wer
made piecewise continuous by eliminating elevations occurring beneabivenmangs
that produced multi-valued series with multiple elevations for a single hotlizonta

coordinate.

4.4.3. Spectral Analysis

The method of Briggs (1989) was used to estimate SPI roughness spectra. Code
to process the data and estimate spectra was tested for accuracy aneagre
previous implementations by applying the code to seafloor profile data feoeo s
photographs used by Briggs (1989) and comparing the results. The method involves
“prewhitening” the relative seafloor height data by taking the fifé¢r@inces of the data
series (series differenced at lag of one sampling interval), agy2® % cosine taper
window to the differenced series, calculating an uncorrected periodogram using the

magnitude values from a fast Fourier transform of the data, then corrédwing t
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periodogram for the “prewhitening” by a factor of L‘F’@ﬁj D), wheref is the spatial
frequency for interval j=1:N, and N is the number of samples in the serieBb,iauie
digitizing interval (Briggs, 1989). The process is demonstrated graphicallyureFg}
where prewhitened and corrected spectra are shown. The same methodology has been
used by Fox and Hayes (1985), and Jackson and Briggs (1992) to estimate seafloor
spectra. Slopes and intercepts of SPI spectra were determined from oleséary-
squares fit regressions over the entire range of spatial frequencies.
Rather than perform an ensemble average to estimate overall spectral

slope of the regression, a weighted mean slope (Slope_wm) value was calouthted b
following method:

g m

i=1j=1
Slope_wm= : J
g

i=1j=1
where g represents the number of groups, in this case sampling sites,sanistiee
number of samples per site, w represents the weight, and s the sample slope. The inverse

of the sample variance for each site were used for the weights.

45. Results and Discussion

4.5.1. SPI Spectral roughness parameters overall and by site

One image (S95_8-5) contained sea pens (Figure 4.5). The inclusion of the
outline of the sea pens as part of the seafloor roughness profile was done only for
comparison of such an extreme case to more typical profiles. The sea pensdextende
about 10 cm vertically from the sediment-water-interface, and had an ornate btagie
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of the profile of the sea pens was overlapping along the horizontal directiofiotbgre
the profile data series for the sea pens used for spectral analysis relsamabige vertical
spike. Such a representation and the effects upon spectral roughness parémester va
was not justifiable for characterization of roughness in terms of hydrdigatseor
acoustic backscatter effects. There may be cases where it would mséécsmclude
the faunal profiles as part of the seafloor roughness profile; however, not insthjs ca
because the effect would produce a roughness estimate that does notalgalistic
represent physical quantities affecting acoustic scattering oruiygdraughness.
Therefore, the sea pens were excluded from the seafloor profile foratiaowdf
statistics; however, for the profile including the sea pens the estimatesspfdctral
slope was -1.775 and the spectral intercept was 0.038Tahle 4.2: S95_8-5bio).

Considering all of the individual SPI seafloor profiles, but excluding the outline
with the sea pens, spectral slopes ranged from -2.06 to -2.052 (N = 34) and spectral
intercepts ranged from 0.00016 to 0.0012 ¢Fable 4.2). The unweighted overall mean
spectral slope was -2.3950.14) and the unweighted overall mean spectral intercept was
0.00027 (=0.00017). The overall weighted mean spectral slope was -2.44, and overall
weighted mean spectral intercept was 0.0002 cm

One sample profile (S95_1-3) resulted in high values for slope and intercept, and
was determined to have a disturbed interface (Figure 4.5). The source of disturbance
could not be identified, but those data were excluded from the calculations of the overall
statistics. For the disturbed profile from S95 1-3, the spectral slope was -2.052, and the

intercept was 0.00118 ér(iTable 4.2).
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Excluding the disturbed profile (S95_1-3) and the profile containing the sea pen
(S95_8-5), the overall range of spectral slopes was -2.06 to -2.046, and the range of
spectral intercepts was 0.00016 to 0.0004& cfine profile with the sea pen produced an
unusually low (less steep) spectral slope and a high spectral intercept ednaptie rest
of the observations and to other studies. The disturbed profile produced a relatively high
spectral slope, and a spectral intercept that was 2.5 times higher thartfangtbeer
undisturbed profiles. Because of this effect, spectra might be a way to Hetect t
presence of disturbance in SPI image interfaces. The unweighted overabpeetal
slope, excluding the sea pens profile and the disturbed profile from S95 1-3, was -2.40
( =0.13), and the unweighted overall mean spectral intercept was 0.00824 cm
( =0.000081).

Mean spectral slopes values by site (N = 9), excluding data from S95 1-3 ranged
from -2.55 (=0.034; Site 8) to -2.22 £€0.23; Site 2) (Table 4.3). Mean spectral
intercepts by site ranged from 0.0001€@.00003; Site 7) to 0.00035 &ih =0.00011;

Site 8) (Table 4.3).

4.5.2. Roughness parameters by depth and facies

SPI spectral slope values increased approximately linearly witkaisiog water
depth, varying from approximately -2.55 in 30 m to -2.25 in 80 m water depth (Figure
4.6). SPI spectral intercept values decreased from approximately 0.00035 to 0.6002 cm
between 30 and 50 m, then increase to 0.0005rcB0 m (Figure 4.6).

Several studies have identified distinct sediment facies in the stuaypairearily
nearshore sands and a mid-shelf flood deposit. Mean SPI spectral slope values became

less steep going from sand to transition to flood-deposit region (Figure 4.7h S®éa
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spectral intercept values were low in the transitional region, and were highsiantthe

and flood deposit facies (Figure 4.7). The higher spectral intercepts in the sand and
flood-deposit regions indicated that the overall magnitude of roughness was higher in
those regions compared to the transitional region.

That overall roughness magnitude was higher in the flood-deposit was expected
because the deposit was known to be highly bioturbated by infauna (Cutter and Diaz,
2000). Similarly, Cutter and Diaz (2000) reported high RMS roughness for the sand and
flood-deposit facies, suggesting that the high RMS in the deposit resulted from
bioturbation. However, RMS alone would not distinguish the flood-deposit from the
sand facies. Here, we find that although SPI spectral intercepts weretingdisbable
between the sand and flood-deposit facies, the SPI spectral slopes werstdiffere
(significantly at p=0.05, according to a Tukey-Kramer HSD test for eaaneal of
means). Although the sediment grain-size distributions were differentdretive facies,
the individual grains did not comprise the roughness features. Although grains may
comprise the roughness features in other geographic locations, here thenbedfdr
biogenic features comprise the roughness elements. Therefore, for Margel study

area, the relationship between roughness and sediment grain size is not direct.

4.5.3. Possible artifacts and need for comparative studies

The sediment-profile camera is a partially destructive samplingelavidoes not
extract material, but it does move and compress sediment during deployment. Although
the images can usually reveal whether the camera system has disturlezd|doe, $here
may be some subtle, systematic, yet unidentified disturbances to the sedfidace

The SPI prism could cause unconsolidated sediment grains to shift or be suspended, and
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perhaps cause sediment to bulge as the prism penetrates. To determine tloé theent
potential disturbance and impacts on roughness estimates, it would be beneficial to
simultaneously collect SPI and plan-view stereo images, so that the steges iwculd
capture the seafloor interface before and after SPI prism penetratio®PThediment-
water-interfaces used for this study were apparently intact, and amuslyvilisturbed
interfaces were excluded from analysis. However, it is important tolisktavhether the
small-scale roughness feature distributions described by spectiydia@ae natural, and
not induced. If the SPI system does cause disturbances and alter the syerctra,

accounting and correcting for the disturbances is important.

4.5.4. Anisotropy

Anisotropic roughness occurred in the sand facies in the form of sand ripples.
The SPI interface profiles and spectra were not adjusted for orientatitverébethe
ripples. Some of the SPI profiles were aligned across ripple crests and athers w
aligned along the ripple-crest strike. The ripple wavelength relativee tepatial
frequency band represented by the measured profile will determine how righleage
the spectrum. In this case, the ripples observed the Eel Margin, inner shebBsimad
wavelengths on the order of 10 to 15 cm. Those wavelengths represent about half of the
lowest frequencies described by the SPI profiles and spectra. Acréssspctra
should have more negative spectral slopes representing a steeper decredseg-and a
strike spectra should have less negative spectral slopes. Consequently, by ignorin
orientation of SPI profiles in rippled sediments, and averaging spectraigtara over

that facies, the roughness for the rippled, anisotropic regions was undetexstima
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4.6. Conclusions

The combination of two spectral parameter estimates (slope and interospdepr
a better discrimination of seafloor facies and classification of seatlvansestimates of
roughness from vertical elevation differences or RMS deviation. The amount of time
required and level of complication involved with generating spectra fidhpisfiles and
estimating spectral parameters could be worth the expense. Automation of ti$s proce
would make SPI valuable to more studies.

Spectral roughness estimates were made on 34 SPI images from the Eel Margi
The unweighted overall mean SPI spectral slope, excluding a profile withreeanmba
disturbed profile, was -2.40, and the unweighted overall mean spectral intersept wa
0.00024 cml That spectral slope value and its corresponding 2-D spectral exponent of
3.4, and the spectral intercept are within the range reported for published values. The
range of SPI spectral slope values (-2.60 to -2.05) suggests that spectralrstpeetfal
exponent) should not be considered a constant term for models, even for the spatial
frequencies of microtopographical profiles. The relationships betweenadsapre and
intercept values and physical and biogenic roughness and associated seaélsor fa
(Figures 6 and 7) suggest that local seafloor zonation and facies distributions should be

accounted for when interpreting and applying roughness spectra pararmetsr va
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49. Tables for Chapter 4

Table 4.1. Position and depth data for SPI1 samples (from the Eel shelf) used for seafloor
roughness spectral analysis. Stations are listed in order of decreasengeydh.

Station Rep #Prof  #Surf Date Time(GMT) Lat (North) Lon (West)

1 1 5 6 12/6/95 222443 40 57.801 124 16.927
1 2 40 57.781 124 16.897
1 3 40 57.799 124 16.872
1 4 40 57.797 124 16.87

1 5 40 57.783 124 16.877
1 6 40 57.78 124 16.87

2 1 5 5 12/6/95 231847 40 53.62 124 15.852
2 2 40 53.624 124 15.801
2 3 40 53.619 124 15.801
2 4 40 53.611 124 15.792
2 5 40 53.616 124 15.799
3 1 5 5 12/6/95 233122 40 53.427 124 15.418
3 2 40 53.365 124 15.408
3 3 40 53.364 124 15.395
3 4 40 53.353 124 15.381
3 5 40 53.339 124 15.366
10* 1 5 5 12/7/95 221223 40 52.977 124 14.822
10 * 2 40 52.954 124 14.825
10* 3 40 52.951 124 14.822
10* 4 40 52.953 124 14.827
10 * 5 40 52.947 124 14.841
4 1 5 5 12/6/95 000026 40 52.96 124 14.501
4 2 40 52.968 124 14.483
4 3 40 52.975 124 14.485
4 4 40 52.98 124 14.482
4 5 40 52.974 124 14.476
5 1 5 5 12/7/95 191453 40 53.131 124 13.875
5 2 40 53.123 124 13.894
5 3 40 53.124 124 13.895
5 4 40 53.138 124 13.887
5 5 40 53.148 124 13.867
6 1 5 5 12/7/95 193535 40 52.962 124 13.805
6 2 40 52.968 124 13.785
6 3 40 52.969 124 13.786
6 4 40 52.969 124 13.747
6 5 40 52.967 124 13.746
7 1 5 5 12/7/95 205531 40 51.988 124 13.762
7 2 40 52.001 124 13.771
7 3 40 51.998 124 13.776
7 4 40 51.994 124 13.774
7 5 40 51.995 124 13.769
9 1 1 6 12/7/95 213858 40 52.194 124 12.867
9 2 40 52.188 124 12.851
9 3 40 52.193 124 12.855
9 4 40 52.191 124 12.861
9 5 40 52.179 124 12.864
9 6 40 52.17 124 12.86

8 1 5 5 12/7/95 211642 40 51.651 124 12.723
8 2 40 51.65 124 12.736
8 3 40 51.663 124 12.744
8 4 40 51.663 124 12.746
8 5 40 51.668 124 12.727
TRIPODS

VIMS(S-70) 40 53.648 124 16.993
VIMS(S-60) 40 53.434 124 15.158
UW(S-60) 40 53.395 124 15.333
USGS(S-50) 40 53.82 124 13.82

* Not included in spectral analysis.
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Table 4.2. Roughness spectra model parameter estimates for Eel sipetifiéd.

Station Slope Intercept
(cn)

S95 01-1 -2.380 0.00025000
S95 01-3* -2.052 * 0.00118000 *
S95 01-4 -2.158 0.00025421
S95 _01-6 -2.439 0.00025412
S95_02-2 -2.046 0.00019575
S95 _02-4 -2.133 0.00047815
S95_02-5 -2.474 0.00024183
S95 _03-1 -2.419 0.00028582
S95_03-2 -2.489 0.00023817
S95_03-3a -2.277 0.00016344
S95_03-4 -2.322 0.00021014
S95_03-5 -2.391 0.00025567
S95_04-1 -2.422 0.00024346
S95_04-2 -2.314 0.00020017
S95_04-3 -2.383 0.00015731
S95_04-4 -2.414 0.00015514
S95_04-5a -2.387 0.00018162
S95_05-1 -2.558 0.00024006
S95_05-2 -2.507 0.00022742
S95_05-3 -2.405 0.00020862
S95_05-4 -2.316 0.00015836
S95_05-5 -2.305 0.00017596
S95_06-1 -2.596 0.00038159
S95_06-2 -2.312 0.00028182
S95_06-3 -2.400 0.00015695
S95_06-4 -2.383 0.00016272
S95_06-5 -2.571 0.00031570
S95 07-1 -2.427 0.00017832
S95_07-2 -2.337 0.00017172
S95_07-3 -2.432 0.00023701
S95_08-2 -2.513 0.00021656
S95_08-4 -2.581 0.00041174
*S95_08-5bio -1.775* 0.03783437 *
S95_08-5nobio -2.552 0.00041425
S95_09-1 -2.446 0.00026566

* Excluded from analyses and summary statistic calculations.
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Table 4.3. Eel shelf SPI spectral parameters, excluding 1-3 and 8-5bio: mean and
standard deviation § by sample site.

Site N Slope (Slope) Intercept (Intercept) Depth
(cn?) (cn?) (m)

1 3 -2.326 0.148 0.000253 0.0000024 83

2 3 -2.218 0.226 0.000305 0.0001515 64

3 5 -2.380 0.083 0.000231 0.0000465 60

4 5 -2.384 0.043 0.000188 0.0000364 52

5 5 -2.418 0.113 0.000202 0.0000344 50

6 5 -2.452 0.124 0.000260 0.0000980 48

7 3 -2.399 0.053 0.000196 0.0000359 43

8 3 -2.549 0.034 0.000348 0.000113¢ 28

9 1 -2.446 : 0.000266 : 36

overall 33 -2.397 0.126 0.000242 0.0000808
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4.10. Figures for Chapter 4

Figure 4.1. Sediment profile imagery (SPI) camera diagram and exangge.im
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Figure 4.2. Study area off northern California, USA, near latitude , longitude 124 W.
Sediment profile image (SPI) transect from the STRATAFORM-1995 study.
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Figure 4.3. Example of sediment profile image, manually traced sedimemt-wate
interface seafloor profile, and extracted profile data series obtainedrnyain
tracing.
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Figure 4.4. Examples of a prewhitened and estimated spectrum (correaddgram)
from a SPI seafloor profile.
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Figure 4.5. SPIl images with a) sea pens, and b) disturbed interface.
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Figure 4.6. SPI spectral roughness parameters, summarized by depth.cif@ Spee,
and (b) spectral intercept.
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Figure 4.7. SPI spectral roughness parameters, summarized by facieSpectal
slope, and (b) spectral intercept.
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CHAPTER 5

5. FACIES FROM THE LOWER PISCATAQUA RIVER (GREAT
BAY ESTUARINE SYSTEM) CHARACTERIZED USING

PHYSICAL SAMPLES AND VIDEO IMAGES

5.1. Introduction

This chapter explores facies characteristics that may be infeoradiultibeam
bathymetry and acoustic backscatter data and from mosaiced seafl@oimadgry, as
discussed in previous chapters. Specifically, this chapter deals with chanagter
seafloor facies by grain-size distributions. Sediment grain size oft@pastant to
benthic fauna and to acoustic backscatter amplitudes. Although grain size isaordythe
factor involved in the complex relationships among those phenomena, often itis a
primary factor and sometimes grain-size can be used as a surrogate folemelkiied
factors. It is not specifically grain size that determines what ilvagyiven area or what
the acoustic backscatter will be, but rather grain size or facies tymeisfirectly
related to the physical environmental conditions that have the most influence.

Sediment samples and seafloor video images were collected to provide detailed
characterizations of facies for ground truthing bathymetric and baceksdata and to

develop habitat maps for the lower Piscataqua River (part of the Greasiey\i.
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Many sites in the Piscataqua River had previously been sampled and mapped by Ward
(1995), however only a few samples existed within this study area. Habitailgyita

index (HSI) maps had been developed previously by Banner and Hayes (1996); however,
only for the upper Piscatagua River and Great Bay Estuary proper.

Fot this study, sediments were characterized using several methods, and
comparisons of the results from the different methods were made and sedinmesizgra
distributions were measured from physical samples of the seafloor. Sediaszeats
were also assigned based on the sample distributions. Sediment classeddoom
images were assigned based on visual analysis of from locations where|@aysigies
were acquired. Sediment distributions were also estimated from analysieof vi
images. Comparisons were made between sediment classes determined $ioah phy
sample data and image analysis and between distributions estimated froralphysic
sample data and image analysis.

If multibeam bathymetry and backscatter data are to be ground truthed, or
empirical models relating acoustic backscatter to sediment propertiteshsre
constructed, or habitat maps are to be developed, then data from multiple approaches to
ground truthing should be compatible. It would be beneficial to be able to use the most
efficient and cost-effective ground-truthing methods possible. However, if taérdit
different sources or methods do not agree, or the data are unable to relateethe sam
information, then one method may not be substituted for another. This study shows that
agreement between facies characterizations from physical sampleageldata can be

good, but it is dependent upon the level of detail.
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5.2. Methods

5.2.1. Sediment sampling

Sediment samples were collected from the Piscataqua River mouth, east of
Newcastle Island, New Hampshire on 04 and 05 September, 2002 from the UNH vessel
R/V Gulf Challenger Sample locations were chosen according to a randomized block
design. Seven seafloor morphological classes derived from the textureisinaly
multibeam bathymetry data within the study area (Cutter et al., 2003) vegt@asiblocks
(strata). Ten random positions were chosen within each class using the MinnéBota D
Sample Generator extension for ArcView GIS software (ESRI)
(http://www.dnr.state.mn.us/mis/gis/tools/arcview/extensions/samghngample.html).

If the generated samples appeared to be too close to the edge of a defsexfjmasor

if the distribution of samples among the class regions did not appear uniformly random,
then samples were regenerated. The locations of two samples within the saniéidave f
(SWF) were arbitrarily changed so that the SWF would be represented by tplesam

the north and two in the south, and with one on the eastern and one on the western sides
of the SWF. This was done because the asymmetrical shapes of the megaripplesbedform
in the SWF suggested that they were formed by ebb tide currents on the easthe&de of
SWF and flood tide currents on the west side of the SWF. Only a portion of the original
study area (Cutter et al., 2003) was sampled. Most samples were dlloithte an area
bounded approximately with the extent of the data from the Simrad EM3000 multibeam
echosounder survey. The sediment sample study area comprised a region bounded by

Universal Transverse Mercator (UTM, Zone 19, WGS-1984) coordinates: E 361000, N
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4769275 and E 361750, N 4770250 m. Forty sites were visited to collect sediment

samples (Figure 5.1).

Figure 5.1. Locations of the sediment sample sites collected in 2002 (39
of the 40 sites visited are shown; 03 _1 is off the map to the north). Sites
are labeled with station identifier; coordinates are UTM, zone 19 north.
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At each site, prior to the collection of a sediment sample, a video camera was
deployed to the bottom and images were recorded while the camera frame was on
bottom, with the camera looking downward. Then, the station was reoccupied by the
vessel and a sediment sampler was deployed. Sample station positions frohearRayt
Raystar 398 differential Global Positioning System (DGPS) receigéersywere
recorded aboard the RSulf Challenger(Table 5.1). The DGPS antenna was

approximately 8 m aft of the A-frame from which the samplers were deploye
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Table 5.1. Recorded coordinates for sediment sample stations.
Coordinates are longitude and latitude (decimal degrees) and UTM
Easting and Northing (m)

Sample Code Longitude Latitude Easting Northing
(Cruise-date_ID) (degrees) (degrees) (m) (m)

200209 01_2 -70.69985 43.07233 361609.2 4770249.5
200209 01_4 -70.70622 43.06625 361077.2 4769584.5
200209 01 5 -70.70643 43.07005 361068.1 4770006.8
200209 01_7 -70.70158 43.06945 361461.6 4769932.2
200209 02_1 -70.70650 43.06582 361053.1 4769536.8
200209 02_2 -70.70603 43.06517 361089.7 4769463.9
200209 _02_7 -70.70275 43.07185 361372.1 4770200.6
200209 _02_10 -70.70320 43.06627 361322.8 4769581.3
200209 03 1 -70.70425 43.07620 361259.7 4770686.2
200209 03 2 -70.70058 43.06360 361529.9 4769280.9
200209 03 7 -70.70298 43.06758 361343.5 4769727.2
200209 03 9 -70.70150 43.06375 361455.6 4769299.0
200209 _03_10 -70.70165 43.06883 361454.8 4769863.8
200209 04 1 -70.70415 43.06603 361245.0 4769557.0
200209 04 2 -70.70523 43.06928 361164.1 4769919.7
200209 04 3 -70.70425 43.06615 361237.1 4769570.1
200209 04 5 -70.70407 43.06926 361259.0 4769915.9
200209 04.1_2 -70.70547 43.06951 361145.6 4769946.0
200209 04.1_3 -70.70735 43.06520 360982.5 4769469.7
200209 04.1_4 -70.70177 43.07042 361448.9 4770039.8
200209 04.1 5 -70.70323 43.06627 361320.1 4769581.4
200209 05 1 -70.70590 43.07195 361115.8 4770216.9
200209 05 2 -70.70247 43.07202 361395.5 4770218.7
200209 _05_3 -70.70023 43.06445 361560.3 4769374.7
200209 05 5 -70.70270 43.06555 361361.9 4769500.9
200209 05 7 -70.70050 43.06695 361544.2 4769652.8
200209 _05_8 -70.70223 43.06713 361403.5 4769676.0
200209 05 9 -70.69978 43.06402 361596.0 4769325.8
200209 _05_10 -70.70302 43.06403 361332.7 4769333.0
200209 06_1 -70.70720 43.06967 361004.8 4769965.5
200209 _06_2 -70.70537 43.07098 361157.1 4770108.7
200209 _06_3 -70.70068 43.06590 361526.9 4769536.5
200209_06_4 -70.70363 43.07038 361296.8 4770039.2
200209 06 5 -70.70252 43.07188 361391.1 4770203.9
200209 _06_8 -70.70328 43.06913 361322.5 4769899.8
200209_07_3 -70.70385 43.06505 361267.2 4769447.3
200209_07_5 -70.70020 43.06830 361571.7 4769802.2
200209 _07_6 -70.69927 43.06560 361641.6 4769500.8
200209 _07_9 -70.70027 43.06515 361559.2 4769452.5
200209 _07_11 -70.70750 43.06653 360973.3 4769618.1
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Sampling using a box corer had been planned, but because the box corer often
failed to recover sediments because of large unconsolidated grains, a Shipskngpéer
was used for most samples. The Shipek grab scoop was 10.2 cm deep, the scoop top was
19.8 cm wide and 19.8 cm long, with a capacity of 3 L. Dimensions of the box corer
were 25 by 25 cm (0.06253n Divers collected cores from two stations using a 10-cm
diameter plastic core tube. For diver core collection, divers descended dowaethe vi
camera cable deployed from the stern of the boat. Prior to the divers collecttogethe
they acquired video footage of the seafloor where the core was to be acquired.

Sediment samples were recovered from 33 locations. Of the 33 samples
recovered, 3 samples were successfully collected using the box corer, 28&saerple
collected using the Shipek grab, and 2 samples were collected by divers (Table 5.2).
order for a sample to be accepted, the general requirement was that thef degiment
in the device was required to be at least 5 cm, and the surface had to be intact, otherwise
the sample was discarded and another acquired. One sample had less than the required
depth of material, but was kept anyway because of multiple attempts wélofitio

recovered material.

Table 5.2. Sediment samples collected by device.

Type Count
Total Sites Visited 40
No Sample 7
Samples Recovered 33
Shipek 28
Box Corer 3
Diver core 2
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The identity of one sample could not be confirmed after analysis, and therefore

grain size distribution data were produced for 32 of the physical samplesembl[€able

5.3).

Table 5.3. List of all grab samples with USGS grain-size

analysis data.

Cruise Station Sampling
N ID ID Device
1 200209 01_2 Shipek
2 200209 01_4 Shipek
3 200209 01 5 Shipek
4 200209 017 Shipek
5 200209 02_1 Box corer
6 200209 02_2 Box corer
7 200209 02_7 Shipek
8 200209 02_10 Shipek
9 200209 03 1 Shipek
10 200209 03 2 Shipek
11 200209 03_10 Shipek
12 200209 04_1 Box corer
13 200209 04 2 Shipek
14 200209 04 3 Shipek
15 200209 04 5 Shipek
16 200209 04.1 2 Shipek
17 200209 04.1 3 Shipek
18 200209 04.1_4 Shipek
19 200209 04.1 5 Diver core
20 200209 05 3 Shipek
21 200209 05 8 Shipek
22 200209 05 9 Shipek
23 200209 06_1 Shipek
24 200209 06_2 Shipek
25 200209 06_3 Shipek
26 200209 06_4 Shipek
27 200209 06 5 Shipek
28 200209 06_8 Shipek
29 200209 07 3 Shipek
30 200209 075 Shipek
31 200209 07_9 Shipek
32 200209 07_11 Diver core

Video imagery was acquired at seven additional stations where no physical

samples were recovered. At these stations rocks and boulders were observed in the
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video, or the sampler failed to recover material. For these seven samplegnsepain-
size distributions were estimated from video images. Table 5.4 relates whiglesam

were subject to which analysis.
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Table 5.4. Sources of sediment grain-size data are indicated for each
sample station.

Phys or Image USGS Sample_ID U_SGS graiq— Imagg
Count Count size analysis analysis
1 1 01 : + +
2 2 01 4 + +
3 3 015 + +
4 4 017 + +
5 5 02 1 + +
6 6 02 2 + +
7 7 02 7 + +
8 8 02 10 + +
9 9 03 1 + +
10 10 03 2 + +
11 03_7 +
12 03_9 +
13 11 03 10 + +
14 12 04 1 + +
15 13 04 2 + +
16 14 04 3 + +
17 15 04 5 + +
18 16 04.1 2 + +
19 17 04.1 3 + +
20 18 04.1 4 + +
21 19 04.1 5 + +
22 05_1 +
23 05_2 +
24 20 05 3 + +
25 05_5 +
26 05_7 +
27 21 05 8 + +
28 22 05 9 + +
29 05_10 +
30 23 06 1 + +
31 24 06 2 + +
32 25 06 3 + +
33 26 06 4 + +
34 27 06 5 + +
35 28 06 8 + +
36 29 07 3 + +
37 30 07 5 + +
38 07_6 +
39 31 07 9 + +
40 32 07 11 + +

Sediment subsamples for grain-size analysis were extracted frorgrach
sample using a large stainless steel spoon, then stored in plastic bags atmperattee

until analysis. The remainder of the sample was prepared for macrofaugaisaoga
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washing using seawater on a 500-sieve, and fixed with 10 % formalin solution in
plastic jars. The samples were transferred from formalin to 95 % ethahuol thitee

days to preserve them.

5.2.2. Sediment Grain Size Distributions from Physical Samples

Analysis of grain-size distribution was performed by the Laboratory afdbnes
Gardner at the USGS Western Region Coastal and Marine Geology Proggalo, M
Park, California. Grain size was determined at 0.25-phi intervals. All samgtesvet
sieved into gravel, sand and fines (silt and clay) fractions, then analyzetbasfol

greater than -1.0 phi (2 mm) -----------=-=-mmmemmm- washed, dried &eighed
between 4.0 phi (63m) and -1.0 phi (2 mm) ---- settling tubes

less than 4.0 phi (63n) ------- Beckman Coulter laser difction.

Menking et al. (1993) describe the USGS grain size analysis methods in soineTteta
grain-size statistics for the distribution data from these methods weseatgd with a
USGS program, SDSZ (Pers. Comm., J. Gardner, USGS, 2003). The mean and median
grain size, sorting, skewness and kurtosis were calculated using threendliffethods,
those of Folk and Ward (1957), Inman (1962) and Trask (1930). Details of the Inman
and Trask statistics can be found in Menking et al. (1993). Details of the Folk and Ward
(1957) statistics are provided here. The statistics were originallyogeeso that they
could be estimated from graph analysis, therefore they use percentilefvahes
cumulative distributions of grain-size data in phi units, where the grain sipeteia( )
is

= -log(Dmm)

where Dnm is the grain-size diameter in mm, or, alternatively
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Dmmzz .

Folk and Ward (1957) (FW) grain size statistics are calculated as:

Meanw (16 s0t 843

Median:w 50
Sortingw =( 16+ g8a)/4+( o5+ 05/6.6
Skewnessy = ( 16+ 84— 2% 50)/2*( sa— 16) +( 05t 95+ 2" 50)/2%( 95— o05)
Kurtosisw =( 95— 05)/2.44%( 75— 25)

where 4 represents the grain size in phi units at the ## percentile of the cumulative

distribution (Menking et al., 1993). Results from the USGS grain-size analgsis ar

supplied in Appendix B-1. Statistics and moments were recalculated using GRADIS

(Blott and Pye, 2001) for quality assurance and are included in Appendix B (B-2, B-3).

5.2.3. Sediment classes from physical samples

Two approaches were used in order to have comparable data from physical
samples and images. First, sediment grain size distribution data from pbgsides
were reduced to percentage gravel, sand, silt, clay, and then to sediment césss nam
according to Folk (1954, 1974) and Shepard (1954), using the program SEDCLASS

(Poppe et al., 2003).

5.2.4. Sediment classes from seafloor images

Initially, images were described using a sediment class name likeftbosthe
Folk’s system for mud, sand, and gravel, or Shepard system for sand, silt, and clay, but
modified for mud, sand, and gravel, as shown in Poppe et al. (2003). Descriptive class

names produced from the images also used modifiers for shell content, so that
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descriptions could accommodate all the combinations of mud, sand, and gravel plus shell.
Class names were applied based on visual interpretation without specificallynmg

any grains or coverage areas in the images. The class names were ittteéapexsent

the proportions of the primary component grain sizes that were visible. For @stanc
sediments in images were classed as sandy gravel when gravelssedy50 %

(coverage area) and sand comprised 25 % to 49 % of the sediments. The images were
analyzed in random order to prevent bias from sequential images that might be similar

because of collection order.

5.2.5. Sediment grain-size distributions from images

Because the class names conveyed a relatively crude level of detaiistance,
sandy gravel encompasses a large range of combinations of sand and gretredj, a
methodology was applied where percent coverage area was estimateth faside
grain-size class. During analysis of images for estimation of covbyagediment grain
size classes, lines with lengths corresponding to divisions of the Wentworth (18i22) gr
size scale were displayed on a reference image that was simultanespislyet! (Figure

5.2).
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Figure 5.2. Wentworth (1922) size-class scales for grain-size classuasissible
in seafloor video images displayed during analysis for estimating geain-s
distribution percent coverage area from images.

Selected grains in the image were measured using a measurement toaedalibra
to a known distance, providing an object of known size to gauge others against. Having a
measured object in the image facilitated estimation of coverage by szeylallowing

visual discrimination of features with respect to an object known to be in a parsizga
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class. Scales representing bounds for the following grain-size classessed to gauge
sizes of grains and features:

BOULDER

25.6 cm = -8 Phi = Boulder size class lower bound

GRAVEL

6.40 cm =-6 Phi Cobble size class lower bound

1.60 cm =-4 Phi Large pebble size class lower bound

0.40 cm = -2 Phi = Small pebble size class lower bound

0.20 cm = -1 Phi = Granule size class lower bound.

5.2.6. Gravel fraction sediment grain size distributions from physical samples

Because grains in the gravel-fraction size-class were discemithle images, but
gravel fraction (<-1 phi, > 2 mm) had not been separated by USGS, additional processing
of the sediments was required. Sediments retained on a -1 phi sieve from the USGS
analysis were dried and sieved through a series of screens at 0.5-phi irft&rsgsi to
-6 phi). Within each size fraction, biogenic sediments (shells) were ssp&n@n
lithogenic grains (rocks) and each group was weighed. Any sediments passigf throu
the series of sieves and retained by the collection pan were also sepacaseélirand
rock groups and weighed. The reason for separating shell from rock was that shell
material could generally be clearly seen in the images. Even venry(dmah - 2 mm)
shell hash and fragments were often apparent. Shell hash (diameter of 1 mamdess
larger shell-fragments typically were much easier to discern ttegéhic grains from
the same size classes (granule or small pebble) because of their whisndatontrast

with background material. Shell is considered an important attribute to benthat habit
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and a significant source of acoustic backscatter, and with potentially diféea@undtic
scattering-effects than rock because of geometrical and mass-deifisigndes.

Shells and rocks in this study area had quite different densities (mass per unit
volume). Shells were less dense, but often had large surface areas. Therefentager
weight might not be equivalent to percentage coverage area when distributions from
samples and images are compared, but are expected to be proportional. Use of either
percent weight data or percent coverage data should enable discriminatiombetwee

facies.
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5.3. Results and Discussion

5.3.1. Sediment grain-size distributions from physical samples

Data tables and histograms for physical sample (grab and core) grin-siz
distributions for each sample are provided in Appendix B (B-4). Sampled sedimant gra
sizes ranged from almost 100 % sand to 100 % gravel, contained very little mud, and no

sample with more than 7 % combined silt plus clay (Figure 5.3 and Table 5.5).

Figure 5.3. Ternary diagram showing the percentages of gravel, sand, and
mud for lower Piscataqua River sediments collected 4-5 September, 2002
using a grab sampler or corer.

Median grain sizes for sediment samples based on the Folk and Ward (1957) method
ranged from 2.46 phi to -1.12 phi (0.18 mm to 2.17 mm), or fine sand to granule (Table

5.5).
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Table 5.5. Grain-size statistics from lower Piscataqua River sediment
samples, using Folk and Ward (1957) (FW) method.

FW FW FW FW FW FW FW

Mean | Median | Sorting | Skewnesg Kurtosis | Mean Median
StationlD () () () () () (mm) (mm)
012 2.52 2.46 0.33 -0.16 0.79 0.17 0.18
01 4 1.99 1.82 0.94 -0.48 2.87 0.25 0.28
015 -1.04 0.01] 1.43 0.96 0.50 2.06 0.99
01 7 -1.09 -0.27 1.22 0.96 9.37 2.13 1.21
02_1 1.99 1.11 1.52 -0.63 0.53 0.25 0.46
02_2 2.12 2.12 0.33 0.07 1.60 0.23 0.23
02_7 -1.12 -1.12 0.06 0.47 0.38 2.17 2.17
02_10 -1.08 -0.06 1.89 0.95 1.03 2.04 1.04
03_1 -1.01 0.07, 1.52 0.95 0.55 2.01 0.95
03_2 -1.12 -1.12 0.06 0.47 0.38 2.17 2.17
03_10 -1.07 -0.09 1.32 0.96 0.52 2.10 1.06
04_1 1.16 1.11 0.78 -0.28 2.26 0.45 0.46
04_2 1.24 1.28 0.35 0.07 1.32 0.42 0.41
04_3 1.46 1.48 0.82 -0.14 2.24 0.36 0.36
04_5 1.22 1.11 0.75 -0.41 2.39 0.43 0.46
04.1 2 -1.08 -0.47 0.88 0.94 0.87 2.11 1.39
04.1 3 2.26 1.39 1.75 -0.53 0.72 0.21 0.38
04.1 4 -1.11 -1.11] 0.52 0.50 9.01 2.16 2.16
04.1 5 -1.05 -0.12 1.28 0.95 0.51 2.07 1.09
05 3 -1.12 -1.12 0.06 0.47 0.38 2.17 2.17
05 8 -1.0¢ -0.25 1.18 0.96 0.82 2.11 1.19
05 9 -1.0% -0.14 1.36 0.95 0.79 2.07 1.10
06 1 2.2¢ 2.19 1.03 -0.32 2.33 0.21 0.22
06 2 -1.12 -1.12 0.40 0.50 7.32 2.17 2.17
06_3 -1.12 -1.12 0.06 0.47 0.38 2.17 2.17
06_4 -1.0% -0.29 1.07 0.94 0.5 2.07 1.22
06 5 -1.07 -0.30 1.08 0.95 0.59 2.10 1.23
06_8 0.41 0.35 1.23 0.03 0.48 0.75 0.78
07_3 1.1(¢ 0.66 1.32 -0.37 0.49 0.47 0.63
07 5 -1.07 0.01 1.46 0.96 0.54 2.10 0.99
07 9 -1.11 -1.11] 0.60 0.50 10.5 2.16 2.16
07_11 1.61 1.08 1.69 -0.29 0.56 0.33 0.47
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Rocks and boulders existed in the study area, but were not directly sampled by the
grab or corer. However, the presence of rocks and boulders were inferregrdlihe
sampler was repeatedly recovered with no sample, or if rocks or boulders wevedbser

in video imagery (Table 5.6).

Table 5.6. Gravel, sand, and mud percent weight data (used for
constructing ternary diagram) from analysis of sediment grab samples. A
* indicates that rocks or boulders were observed in imagery.

Station_ID Gravel Sand Mud Rock/Bldr
01 : 0.4t 98.1:2 1.42
01 ¢ 14.9¢ 81.8€ 3.1¢
01 ¢ 60.4¢ 37.11 2.4t
01 7 80.0¢ 17.72 2.20
02_1 25.3¢ 72.3¢ 2.2t
02 2 1.0¢ 96.2:¢ 2.6¢
02_7 98.9: 0.87 0.20
02_1( 57.4¢ 36.7:2 5.7¢
03_1 51.70 44.6¢ 3.61
03 2 98.€0 1.0z 0.3¢
03_7 . . .
03_¢ . . . 100 *
03_1( 68.4¢ 29.4¢ 2.0z
04_1 10.70 88.50 1.0C
04 2 2.77 96.57 0.6t
04 _: 6.2¢€ 91.7¢ 1.9¢
04 ¢ 10.61 88.1¢ 1.2¢
04.1 : 72.0% 25.87 2.0¢
04.1 : 24.6:% 71.61 3.7¢
04.1 ¢ 89.07% 9.3¢ 1.€0
04.1 ¢ 61.7i 36.9:2 1.20
05_1 100 *
05 2 . . . 100 *
05 ¢ 97.0¢t 2.7¢ 0.17
05 ¢ . . . 100 *
05 7 . . . 100 *
05 ¢ 74.0¢ 24.6: 1.2¢
05 ¢ 61.1¢t 37.37 1.4¢
05_1( . . . 100 *
06_1 10.3: 87.0¢ 2.5¢
06_z 94.1¢ 5.51 0.31
06_: 98.3¢t 1.51 0.1¢
06_¢ 61.5¢ 37.4¢ 0.9¢
06 - 69.0¢ 30.1¢ 0.7z
06_¢ 47.77 50.4¢ 1.7¢
07_c 37.4¢ 6C.0C 2.52
07_t 68.0¢ 31.01 0.9¢
07_¢ . . . 100 *
07 _¢ 87.9] 11.97 0.1z
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The spatial distribution of the sediment grain-size distributions generally
corresponded with expected size classes based on morphological regions e\ltent i

multibeam bathmetry (Figure 5.4) and the sediment map of Ward (1995).

Figure 5.4. Sediment grain-size statistics from analysis of grab esimpledian
grain size, sorting, and skewness, according to Folk and Ward (1957) (FW) method.
In the legend, grsz stands for grain size.
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5.3.2. Sediment classes from physical samples

Folk (1954, 1974) and Shepard (1954) sediment class names were generated,
using SEDCLASS (Blott and Pye, 2001), from sediment-sample data reduced to

percentages of mass for gravel, sand, silt, and clay size fractions (Tgble 5

Table 5.7. Folk (1954, 1974) and Shepard (1954) sediment class names from
percent-mass sediment sample data.

Station Gravel Sand Silt Clay FOLK_CLASS SHEPARD_CLASS
D % % % %
SLIGHTLY
01 2 0.45 98.12 0.8 0'64GRAVELLY SAND SAND
01 4 14.95 81.86 1.93 1.26 GRAVELLY SAND GRAVELLY
01 5 60.44 37.11 1.6 0.85 SANDY GRAVEL GRAVEL
01 7 80.08 17.72 1.45 0.75 GRAVEL GRAVEL
02_1 25.36 72.39 1.31 0.94 GRAVELLY SAND GRAVELLY
SLIGHTLY
02_2 1.08 96.23 1.6 l'ogGRAVELLY SAND SAND
02_7 98.93 0.87 0.17 0.04 GRAVEL GRAVEL
MUDDY SANDY
02_10 57.49 36.72 3.79 2'01GRAVEL GRAVEL
03 1 51.7 44.69 2.31 1.29 SANDY GRAVEL GRAVEL
03 2 98.6 1.02 0.33 0.04 GRAVEL GRAVEL
03 9 . . . .
03_10 68.48 29.49 1.17 0.86 SANDY GRAVEL GRAVEL
04.1 2 72.07 25.87 1.37 0.69 SANDY GRAVEL GRAVEL
04.1 3 24.63 71.61 2.25 1.51 GRAVELLY SAND GRAVELLY
04.1 4 89.07 9.33 1.32 0.28 GRAVEL GRAVEL
04.1 5 61.77 36.92 0.83 0.47 SANDY GRAVEL GRAVEL
04 1 10.7 88.3 0.63 0.37 GRAVELLY SAND GRAVELLY
SLIGHTLY
04 2 2.77 96.57 0.47 O'lgGRAVELLY SAND SAND
04_3 6.26 91.76 1.16 0.82 GRAVELLY SAND SAND
04 5 10.61 88.16 0.74 0.49 GRAVELLY SAND GRAVELLY
05 1 . . . .
05 2 . . . .
05 3 97.05 2.78 0.14 0.03 GRAVEL GRAVEL
05 5 . . . .
05_7 . . . .
05_8 74.09 24.62 0.84 0.45 SANDY GRAVEL GRAVEL
05 9 61.15 37.37 1.05 0.43 SANDY GRAVEL GRAVEL
05_10 . . . .
06_1 10.32 87.09 1.48 1.11 GRAVELLY SAND GRAVELLY
06_2 94.18 551 0.23 0.08 GRAVEL GRAVEL
06_3 98.35 1.51 0.12 0.02 GRAVEL GRAVEL
06_4 61.55 37.49 0.69 0.27 SANDY GRAVEL GRAVEL
06_5 69.09 30.19 0.46 0.26 SANDY GRAVEL GRAVEL
06_8 47.77 50.46 1.08 0.7 SANDY GRAVEL GRAVELLY
07_3 37.48 60 1.49 1.03 SANDY GRAVEL GRAVELLY
07_5 68.05 31.01 0.59 0.4 SANDY GRAVEL GRAVEL
07_6 . . . .
07_9 87.91 11.97 0.08 0.05 GRAVEL GRAVEL
07 11 27.37 68.5 2.6 1.53 GRAVELLY SAND GRAVELLY
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5.3.3. Sediment classes from seafloor images

Folk (1974) grain size classes estimated from the images are repofizole
5.8. Rock was also included as a class. Shells were only considered in terms @ktheir s
class for this dataset. Sand, sandy gravel, gravelly sand, gravel and roatentfied
from the images. In addition, a simplified class name was developed by removing
modifiers from Folk (1974) class names. For example, sandy gravel wadisuiripli
gravel. Hence, three crude facies classes were applied to thediasgjgécation; sand,
gravel, and rock. Images used to estimate sediment grain sizes are provided inXAppendi

B (B-5).
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Table 5.8. Folk (1974) and simplified (sand, gravel, rock)
sediment classes estimated from visual interpretation of seafloor
video images from the lower Piscataqua River. S=sand, G=gravel,
R=rock, GS=gravelly sand, SG= sandy gravel.

StationID Visually-estimated Visually-estimated Visually-estimated
Folk Class Folk Class Code Simplified (MSGR)
Class Code

012 Sandy Gravel SG G
01 4 Sand S S
015 Sand S S
01_7 Gravel G G
02_1 Gravelly Sand GS S
02_2 Sand S S
02_7 Gravel G G
02_10 Gravel G G
03 1 Gravel G G
03 2 Sandy Gravel SG G
03 7 Sandy Gravel SG G
039 Rock R R
03_10 Gravel G G
04 1 Sand S S
04 2 Gravelly Sand GS S
04_3 Sand S S
04 5 Gravelly Sand GS S
04.1 2 Gravel G G
04.1 3 Sand S S
04.1 4 Gravel G G
04.1 5 Sandy Gravel SG G
05 1 Rock R R
05 2 Rock R R
05 3 Sandy Gravel SG G
05 5 Rock R R
05 7 Gravel G G
05 7 Rock R R
05_7 Gravel G G
05 7 Rock R R
05_8 Gravel G G
059 Gravel G G
05_10 Gravel G G
06_1 Gravelly Sand GS S
06_2 Gravel G G
06_3 Sandy Gravel SG G
06_4 Sandy Gravel SG G
06_5 Gravel G G
06_8 Sandy Gravel SG G
07_3 Gravel G G
07_5 Sandy Gravel SG G
07_6 Gravelly Sand GS S
07_9 Gravelly Sand GS S
07 _11 Gravelly Sand GS S
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5.3.4. Comparison of sediment classes from physical samples and images

Comparisons of sediment classes estimated from visual analysis and sample dat

are shown in Table 5.9.

Table 5.9. Comparison of sediment classes estimated from images and Eaysjuiais
(+ indicates that the classes were identified as the same; - inditattetasses were

wn

identified as different; “.” indicates that no comparison was made).

Image:Sam
Image  Sample Image:Samplelmage Sample ple
N StationID Image  Folk Folk Folk Class  Simplified Simplifie Simplified
Class Class Comparison Class d Class Class
Comparison

1 01: 00 12 SC GS< 0 G S 0
2 01¢ 01 4 S GS< 0 S S 1
3 01t 02 5 S SC 0 S G 0
4 017 42 17 G G 1 G G 1
5 021 03 1 GS GS< 1 S S 1
6 02z 14 22 S GS< 0 S S 1
7 027 50 -7 G G 1 G G 1
8 02 U 37 10 G MSG 0 G G 1
9 031 04 -1 G SC 0 G G 1
10 03 - 17 -2 SC G 0 G G 1
11 03 7 36 &7 SC . G .
12 03 ¢ 45 9 R . R
13 03 1( 40 +10 G SC 0 G G 1
14 04 1 06 41b S GS< 0 S S 1
15 04 ¢ 24 L2 GS GS< 1 S S 1
16 04 : 44 £3 S GS< 0 S S 1
17 04 ¢ 35 45 GS GS< 1 S S 1
18 041 : 234.-2 G SC 0 G G 1
19 041 ¢ 26 4.3 S GS 0 S S 1
20 041 ¢ 49 44 G G 1 G G 1
21 04.1*t 53 4.5 SC SC 1 G G 1
22 051 27 =1 R . R
23 05 = 32 52 R R
24 05 ¢ 43 &3 SC G 0 G G 1
25 05 ¢ 3855 R R
26 05 7 19 &7 G . G .

05 7 20 =7b R . R .

05 7 51 &7¢ G . G .
27 05 ¢ 3958 G SC 0 G G 1
28 05 ¢ 46 =9 G SC 0 G G 1
29 05 U 41 510 G . G .
30 06 1 21 €1 GS GS< 1 S S 1
31 06 = 28 €2 G G 1 G G 1
32 06 < 29 €3 SC G 0 G G 1
33 06 ¢ 30 €4 SC SC 1 G G 1
34 06 ¢ 315 G SC 0 G G 1
35 06 ¢ 34 €8 SC SC 1 G G 1
36 07 ¢ 18 -3 G SC 0 G G 1
37 07 ¢ 33 5 SC SC 1 G G 1
38 07 ¢ 48 -6  GS . S .
39 07 ¢ 47 9 GS G 0 S G 0
40 07_11 54 7-11 GS GS 1 S S 1
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Summaries of comparison results for each classification scheme areishown
Tables 5.8, 5.9, and 5.10. Poor agreement existed between Folk (1974) classes
estimated from images and samples when modifiers for secondary components

were used (e.g. sandy gravel), with 59 % disagreement (Table 5.10).

Table 5.10. Folk (1974) class determined
from visual analysis of video compared to
Folk class from sediment samples. Listed is
the frequency of samples for which classes
agreed or disagreed, and percentage
(dis)agreement is given in parentheses.

Image:Sample Frequency
Comparison

No Data 11

O (Different) 19 (59 %)
1 (Same) 13 (41 %)

When shell fragments identified in images were grouped in the gravel asz-cl
agreement improved only slightly; half of the Folk classes from images anudesa

agreed (Table 5.11).
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Table 5.11. Folk (1974) class, including
modifiers, determined from visual analysis of
video, accounting for shell fragments in the
gravel class, compared to simplified sediment
class from sediment samples. Listed is the
frequency of samples for which classes agreed
or disagreed, and percentage (dis)agreement is
given in parentheses.

Image:Sample Frequency
Comparison

No Data 11

0 (Different) 16 (50 %)
1 (Same) 16 (50 %)

Simplifying sediment classes by removing modifiers for secondary comparsotted
in 91 % agreement between classifications from images and samples (Table 5.12).
Hence, when only crude facies classes (such as mud, sand, gravel, and rock) were used,

visual interpretation matched results of sediment sample analysis in aléadges.

Table 5.12. Simplified-class determined from
visual analysis of video compared to simplified
sediment class from sediment samples. Listed is
the frequency of samples for which classes
agreed or disagreed, and percentage
(dis)agreement is given in parentheses.

Image:Sample Frequency
Simplified-Class

Comparison

No Data 11

0 (Different) 3(9%)
1 (Same) 29 (91 %)
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A graphical summary of comparisons between sediment classes made frazalphys

sample data and images is shown in Figure 5.5.

100

B Same

Folk

Sinple (MSGR) B

Folli with S ac &

Classification
Figure 5.5. Summary of comparisons of sediment classifications made using
physical sample data and images. “Folk” is from the classificatibolioclass
with modifiers, “Folk with Sh_as_Gr” is the classification made where ks
was considered to be gravel-size, and Simple (MSGR) is the classificatatyt
primary components (mud, sand, gravel, rock).
Better agreement was expected between the classification fesoltenages and
samples. It was expected that sandy gravels and gravelly sands would ifieddant
images with higher rates of accuracy. The low rate of agreement (5Qubb)oeo
explained by several possibilities, including actual differences becalmmabspatial
variability (images and samples were not necessarily from the exaei@eetion), poor
visual judgment or visual bias, or sediments with close to 50 % sand and 50 % gravel

would appear as either sandy gravel or gravelly sand, depending on what was exposed at

the interface. Sediments were visually identified in several caggaasd when analyses
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determined that they were sandy gravel, and sand was not evident in the image eithe

because of sparse or low areal-coverage or because of poor image resolution.

5.3.5. Sediment grain-size distributions from images

Sediment grain-size classes with ranges that spanned one to two phi units were
used to estimate sediment grain-size coverages from images (TE)le Gthogenic
(rock) and biogenic (shell) components were separated for gravel sigesclaswas
determined that the recombined size classes were visually distinguishabédloor
video images, either by measuring features in images or visually estirsetes of

grains, or by color and texture.

Table 5.13. Sediment grain-size classes used for analysis of seafloor vides and

for comparison with recombined sediment grain size distribution data. For the sedime
class name codes, Rk = rock, Bldr = boulder, G = gravel, S = sand, Lith = lithogenic, Sh
= shell (biogenic), cobb = cobble, peb = pebble, Ig = large, sm = small, grain =egranul

Recombined Size Recombined Min. Size  Max. Size Min. Size  Max. Size
Classes Sediment Class (Phi) (Phi) (mm) (mm)
Name Codes
Rk.Bldr Rk.BIdr NA -8.0 256 NA
-8.0t0 -6.0 (lith)  G_Lith_cobb -8.0 -6.0 64 256
-5.5t0-4.0 (lith) G_Lith_peb_Ig -6.0 -4.0 16 64
-3.5t0-2.0 (lith) G_Lith_peb _sm -4.0 -2.0 4 16
-2.0t0 -1.0 (lith)  G_Lith_grain -2.0 -1.0 2 4
-8.0t0 -6.0 (shell) G_Sh_cobb -8.0 -6.0 64 256
-5.5t0-4.0 (shell) G_Sh_peb_lIg -6.0 -4.0 16 64
-3.5t0-2.0 (shell) G_Sh_peb_sm -4.0 -2.0 4 16
-2.0t0-1.0 (shell) G_Sh_grain -2.0 -1.0 2 4
-0.75t0 1.0 S _coarse -1.0 1.0 0.5 2
1.25t0 4.0 S_fine 1.0 4.0 0.0625 0.5
>4.25 Mud 4.0 14.0  0.00006 0.0625
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Coverage areas estimated from video images for each sediment geaitass
are shown in Table 5.14. Coverages of lithogenic (“lith”) and biogenic (“sh” fdj she
materials in the gravel size classes were separately estim@bcks or boulders were
present in 6 of the 40 images. Mud could not be identified in any images. Previously,
analysis of sediment samples did not separate the gravel fractions, blgat isamn the
data in Table 5.14 that substantial amounts of gravel in different gravel sigesla
(cobble, pebble, and granule) existed in the study area.

Lithogenic cobbles were rare, but when present they occupied from 1 % to 31 %
of the coverage area (Table 5.14). Large and small lithogenic pebbles were camdmon a
occupied substantial coverage areas. Lithogenic granules were sesietimd to cover
1 % to 50 % of the area, but often could not be distinguished. Gravel-sized shell material
was commonly present, and was found in all but one image. Cobble-sized shell valves
were occasionally present, and covered from 1 % to 5 % of the area. Small and large
pebbles and granule-size shell material was common and covered from less than 1 %t
50 % of the coverage area when present (Table 5.14).

Sand was sometimes distinguishable by color or texture patterns, but not
necessarily as grains. Mud was not identified in any images. In seafloorfrade
other study areas mud has been identifiable (by color and texture). At theasitpled
within this study area, grab sample data showed that mud was rare and preselht in sma

guantities.
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Table 5.14. Percentage of coverage area for each sediment size nteeddtom
seafloor video images acquired at sediment sample sites. The coverage argagesrce
sum to 100 % except in cases where the lithology was not determinable in part of the

image. (“.” =indeterminate). G = gravel, lith = lithogenic, sh = shell, Rick, Bldr =
boulder, cobb = cobble, peb_Ig = large pebble, peb_sm = small pebble, grain = granule.

Label Rk/ G_Lith_ G lith. G lith. G lith. G sh G sh G sh_  G_sh_ Sand Mud
Bldr cobb peb Ig peb sm grain cobb peb Ilg peb sm grain

01_02 0 0 10 10 . 0 1 1 1 77
01_04 0 0 0 0.1 0 1 0.1 0.1 98.7
01_05 0 0 5 1 0 0 5 5 84
01_07 0 0 80 10 5 1 1 0.1 0
02_01 0 0 0 5 . 0 0 5 1 89
02_02 0 0 0 1 50 0 1 1 10 37
02_07 0 0 75 9 0 5 10 1 .
02_10 0 0 10 75 0 1 10 3 1
03_01 0 0 10 80 0 0 1 9 0
03_02 0 0 31 31 0 2 5 31 .
03_07 0 1 1 60 0 1 1 1 35
03_09 80 0 5 0 0 10 0.1 0.1 .
03_10 0 0 75 20 0 0 1 1 3
04_01 0 0 0 0.1 . 0 0 0.1 40 59.8
04_02 0 0 0 1 10 2 0 10 25 52
04_03 0 0 0 0 1 0 0 1 10 88
04_05 0 0 0 0 40 0 0 1 10 49
04.1_02 0 0 72 25 0 1 1 1 .
04.1_03 0 0 0 0.1 0 1 1 1 96.9
04.1_04 0 0 88 10 . 0 1 1 . .
04.1_05 0 0 25 25 10 0 2 10 10 20
05_01 75 . . . . . . . .
05_02 85 5 0 0 0 0 1 9 0
05_03 0 0 50 1 0 20 1 1 25
05_05 99 0 0 0 0 0 0 1 0
05_07 100 0 0 0 0 0 0 0 0
05_08 0 0 90 1 0 1 2 3 3
05_09 . 0 30 30 0 1 30

05_10 50 10 10 10 1 0 5 3 3 0
06_01 0 0 0 1 1 25 10 10 53
06_02 0 31 33 33 0 0 1 1 1
06_03 0 0 50 38.9 0 0 1 0.1 10
06_04 0 . 50 25 0 0 1 1 10
06_05 0 0 49.5 49.5 0 0 0 1 0
06_08 0 0 60 20 0 10 1 1 5
07_03 0 0 10 25 0 1 10 50 4
07_05 0 0 1 48.9 0 1 0.1 0.1 48.9
07_06 0 0 5 10 0 5 1 1 88
07_09 0 0 10 10 . 0 0 1 0 79
07_11 0 0 1 30 1 0 1 1 1 65

Figures of the grain size coverage data shown in Table 5.14 are provided in

Appendix B (B-6).
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5.3.6. Gravel-fraction sediment grain-size distributions from physical samples

The initial grain size analysis of sediment samples did not separatatet grze
class fraction (grains with diameters > 2mm, or < }1 Because many of the samples
from this study area contained substantial proportions of gravel-sized sedimerdjrihe g
size distributions often contained a well-separated sand fraction and a taylgevalue
representing the gravel fraction, such as in the example from sample 200209 _02_10

(Figure 5.6).

Figure 5.6. Example of grain-size distribution from original analysis ofrs=di
samples. Percentage of mass is plotted. Sand is shown as gold, gravel (retaiied on a
phi sieve), labeled as G, is shown as black.

Most of what could be visually identified from seafloor video images was gravel-
sized sediment. Therefore, the gravel fractions from the samples waratsd by dry
sieving. An example of the result (for the same sample as in Figure 5.6) s ishow

Figure 5.7.
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Figure 5.7. Sediment distribution plot after including the separated grastebfiraSand
is shown as gold, gravel is shown as black.

In addition to separating the gravel fraction, the lithogenic and shell nisiteaee
separated for each of the gravel size class intervals (-1 to)—{®oducing a distribution

such as that shown in Figure 5.8.

Figure 5.8. Histogram of sediment grain-size data showing percent weigltiodat
separated gravel size classes for lithogenic (black) and shell (gatgfiads. Sand and
mud size-class data are also shown (gold).
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Because most of those size class intervals could not be distinguished visualie the s
classes were recombined into classes with the 1 to 2 phi intervals shown in Table 5.13.

That resulted in size class distributions like the one shown in Figure 5.9.

Figure 5.9. Sediment grain size grab sample data histogram using timdiresmb
size classes that could be distinguished visually and were also used foizgain-s
distribution data from images.

The sediment grab-sample grain-size data resulting from the recombieedesare

summarized in Table 5.15.
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Table 5.15. Percentage of weight (mass) for each recombined sedimerdssze cl
estimated from grab, corer, or diver core sample data. “.” = no data, G % {tlave
lithogenic, sh = shell, Rk = rock, Bldr = boulder, cobb = cobble, peb_Ig = large pebble,
peb_sm = small pebble, grain = granule.

-80to -55t0 -35t0--2to- -80to -5.5t0 -3.5to--2to- -75t0 >4
Rock -6.0 -40 20 1.0 -6.0 -40 20 1.0 4.0
Bldr Glith Glith Glith Glith Gsh Gsh Gsh Gsh
Station Inferred Cobb Peb Ig Peb smGrain Cobb Peb Ig Peb smGrain Sand Mud

01 2 0 0 0 0 0 0 0 02% 02¢ 981; 1.4
01 ¢ 0 0 0 54/ 0.5C 0 0 6.2° 277 818 3.2
01 ¢ 0 0 57.7¢ 0 0.2 0 0 136 1.2¢ 37.0¢ 2.44
01 7 0 0 5957 14.1¢ 1.11 0 0 25 27C 17.71 2.21
02_1 0 0 0 1957 2.8€ 0 0 1.06 1.82 7237 2.2t
02 2 0 0 0 016 0.27 0 0 1.4F 11z 96.2; 2.7F
02 7 0 0 9661 091 0.07 0 0 07 06C 178 042
02_1( 0 0 26.0¢ 9.8 1.41 0 0 29.4( 7.61 56.7¢ 5.7¢
03_1 0 0 13.2¢ 2371 2.5C 0 0 65/ 55¢ 447( 3.6z
03 2 0 0 95.9¢ 0 0 0 0 157 1.0z 1.0C 0.3¢
03 7 .

03 ¢ 10C . . . . . . . . . .
03_1( 0 0 39.1¢ 2271 161 0 0 207 327 287: 2.0C
04_1 0 0 0 0 1.2¢ 0 0 251 6.8 8831 1.01
04 2 0 0 0 01z 0.1f 0 0 03C 21°F 96.5¢ 0.82
04 - 0 0 0 01¢ 0.1¢ 0 0 087 487 91.7¢ 1.9¢
04 ¢ 0 0 0 021 0.4z 0 0 1.9¢ 7.9¢ 88.1¢ 1.24
04.1 : 0 0 0 56.2¢ 11.2¢ 0 0 1.4/ 326 2587 2.0¢€
04.1 - 0 0 711 958 281 0 0 0 05z 716: 3.7C
04.1 ¢ 0 0 48.1¢ 356( 1.2¢ 0 0 1.2 266 936 1.6C
04.1 ¢ 0 0 32,07 2447 1.2: 0 0 21% 1.97 3697 2.0C
05_1 10C . . .

05 2 100 . . . . . . . . . .
05_- 0 0 93.8. 27¢ 0.1C 0 0 011 02 266 0.2¢
05 ¢ 10C

05_7 10C . . . . .
05_¢ 0 0 435¢ 252¢ 2.4¢f 0 0 15% 1.6% 2467 1.27
05_¢ 0 0 1897 2587 11.2¢ 0 0 24z 2.4C 3738 1.47
05_1( 10C . . . . . .

06_1 0 0 0 407 0.2¢ 0 0 33% 26¢ 818 25¢
06_2 0 0 95.6¢ 0 0.1 0 0 021 05 555 0.3
06_- 0 0 83.00 14.0¢ 1.3Z 0 0 01¢ 014 15% 0.14
06_¢ 0 0 493( 758 1.9 0 0 01F 0.27 37.4¢ 0.9t
06_t 0 0 5247 12.0: 3.11 0 0 03¢ 1.3C 3021 0.8¢
06_¢ 0 0 22.8¢ 18.0¢ 4.5¢ 0 0 04¢ 1.9z 504/ 2.4C
07 - 0 0 13.6:/ 83€ 4.6¢ 0 278 266 5.3¢ 60 2.52
07 ¢ 0 0 49.0¢ 17.61 O0.7¢ 0 0 026 047 310 1.2
07 ¢ 10C . . . . . . . . .
07 ¢ 0 7857  9.41 0 0 0 0 0 11.9¢ 0.0¢
07 17 0 0 0 15.7¢ 10.1° 0 0 08¢ 061 684¢ 412

Using the recombined size class scheme, results from analysis of sedimegletssaould
be compared to results from analysis of images. Side-by-side plots comparing the
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sediment data from samples to images in Table 5.14 and Table 5.15 are provided for all

samples in Appendix B (B-6).

5.3.7. Comparison of sediment grain size distributions from physical samples and
images

Sediment size-class distributions estimated from analysis of seaflagein
resembled recombined distributions measured from the gravel-separdiedmaes. It
is clear from the graphs that agreement between sediment size clalsstidiat
determined from both methods is good, although not for all samples. Note that grab
sample data represent percent mass and image data represent perceye eosarand,
therefore, identical numbers should not be expected. Also note that analysis of video
images for sediment distribution was done independent of, and without reliance on,

sediment grab sample results. Figure 5.10 shows examples for one sample site.
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Figure 5.10. Example of comparison between sediment grain size distribution
from grab sample to sediment distribution estimated using a video image from
station 3-10. Numeric labels represent percentages: percentage of mass for
sample, and percent cover for image. NaN represents no data. The categories
represent: (RkBId) Rock or Boulder, (GLCob) lithogenic gravel in cobble range,
(GLPIg) lithogenic gravel in large pebble range, (GLPsm) lithogemieajin

small pebble range, (GLgra) lithogenic gravel in granule range, (GSCol®lg
sized biogenic shell cobble range, (GLPIg) gravel-sized biogenic sHatlge

pebble range, (GLPsm) gravel-sized biogenic shell in small pebble range, YGLgra
gravel-sized biogenic shell in granule range, (Sand) all sediments imthsiza
classes, (Mud) all sediments in the silt and clay size classes.

Despite that apparent good agreement existed between data from physptaksa
and images based on visual inspection of the graphs, it is desirable to place atyeantit
descriptor on how well sediment size class distributions estimated fronsiarctly

seafloor imagery resemble distributions measured from grab samplesf dush a
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statistic was not intended to determine whether the estimates represergachéh

seafloor data, but rather to provide some quantitative assessment of how well the data
from different sources agreed and how well one type of data might be expected to predict
the other. An insignificant value for a chi-square statistic might simpanrtteat the test

did not apply. Because the grab sample and image sample were not simultaneously
acquired, some differences could be explained by spatial variability of pespdue to
positional differences during reoccupation of the station. Alternatively, visamkbuld

have been the cause.

5.3.8. Goodness of fit, distance, similarity

Chi-square and Kolmogorov-Smirnov (KS) goodness-of-fit tests were rediewe
for applicability to the task. The KS test and the chi-square test are non-paréfeet
1984). Although it was calculated for these comparisons, the chi-square test idyproba
not appropriate for comparing these data for several reasons. The datntepres
percentages (percent weight and percent cover). Zar (1984) warns thgianei-s
statistic calculated from converting frequency data to percentagesvalidothowever, it
is unclear whether this applies to data that begin as percentages. Timeamare
categories with missing data or low percentages (<5 %) and, therefore, sugiate-
statistic would be suspect in these cases. The KS test is probably more agptapriat

the data and also is calculated for assessing agreement.
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5.3.9. Distances, Similarity, and Dissimilarity measures

5.9.1.3. Bray-Curtis similarity and dissimilarity

Bray-Curtis similarity is often employed by ecologists, usuallygfouping or
ordination of biological community data. Bray-Curtis similarity is gathe considered
equivalent to Sorensen’s index (Gallagher, 1998). The original formulation of Bray-
Curtis similarity (BCs) (Bray and Curtis, 1957) is the form used by COMPAH96
(Gallagher, 1998), a popular clustering package.

BCs = 2*SUM(mMin(%,xx)) / SUM (%+X«)
where xis the physical-sample data-arrayjsthe image data-array, i and j range from
1:n, SUM represents summation over the length (n) of the array, and min stands for
minimum.

Here, the Bray-Curtis dissimilarity (BCd) is used, where

BCd =1 - BCs.

Alternatively, the Bray-Curtis dissimilarity index (BCd) can be found infoinen:

BCd = SUM(abs(¥xk) / SUM (%+xx)

where abs stands for the absolute value, and multiplication by 2 is not included.

5.9.2.3. Euclidean distance
The Euclidean distance (D_Eucl) between two vectors, x and y, is
D_Eucl = [SUM(%-y;)*2]"0.5

where i is number of dimensions, or variables, contained by each vector.

In matrix form, Euclidean distance between vectors X and Y is the norm of X-Y

D_Eucl = || X-Y ||
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which is equivalent to
D_Eucl = [(X-Y)"2]"0.5
The squared Euclidean distance is
D_Eucl2 = [X-Y][X-Y]
where T indicates the transpose. Euclidean distances are not standardizedefodg ther
may be uninterpretable if the variables are measured in different units.hla sase, it

is desirable to adjust for the effects of different scales or units by staratandi

5.9.3.3. Mahalanobis Distance

A related distance, the Mahalanobis Distance (D_Mabhal), compensates for
unequal variances (that can be introduced by different units) between variatllasea
the covariance matrix for standardization:

D_Mahal = [X-Y]'[C]*-1[X-Y]
(modified from Davis, 1986) and C is the covariance matrix for X and Y.

There are not straightforward ways to assign probability of occurtence
distances or dissimilarities (such as the Euclidean, Bray-Curtis, andldt@bis) in
order to assess whether the observed value exceeds some threshold for acceptgance. T
analyst must judge how to categorize the values if a decision is to be made atibat whe
the data agree or not. Often, minimum distance criteria are applied to detgroupe
membership based on a distance/dissimilarity value. However, in thid easdrying to
assess agreement between data from samples and images. It isgptefprige against
some standard, rather than arbitrarily deciding on a threshold value. Therefore, two
statistical tests are applied: the chi-square and Kolmogorov-Smirnov geadrigs

tests.
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5.9.4.3. Chi-square statistic
The Chi-square test statistic is calculated as:

K (Oj - Ej)2
= E

J

C?=

for the jth class of k classes, using image data as O (observed), sampieklata a
(expected). If the value of E was equal to zero, then 0.5 was added. A chi-square test
was performed, comparing the calculated X*2 to X"2 critical for 10 degrée=edbm

at a probability level of 0.05 (X*2crit_a:0.05,df:10 = 18.307). A chi-square statistic
value that exceeds critical value is considered significant at that projp&hikl. The
probability level of 0.05 suggests that 1 in 20 times (5 %), a larger than thal edice
could occur by chance. Significance of the chi-square statistic ggrmrgliests that the
null hypothesis, that the two distributions are the same, can be rejected. However,
caution should be used in the interpretation of significance in this case because of the
differences between the data and the questionable validity of chi-sostdie these

data.

5.9.5.3. Kolmogorov-Smirnov test

A Kolmogorov-Smirnov (KS) test for continuous data was performed as another
way to assess agreement between the sediment distributions from the samiles and
images. The KS test is a non-parametric goodness-of-fit test desigeédtalhefor
ordered categories (Zar, 1984). The sediment size class data areeatganiered
categories; therefore, the KS test seems appropriate. The KS isst stgiresents the

maximum value of the deviation (difference) between the observed cumulative
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distributions and the theoretical (or specified) cumulative frequencybdistmn (cfd)

(Zar, 1984). Often, the KS test is used to determine whether data are nornualyteid
(or Poisson, or logistic, etc.). In these comparisons between image and Idarsicie
data, the image data represent the observed and the sample data are uspeaBdtie s

distribution.

5.3.10. Summary of Agreement Assessment

Euclidean distance and Bray-Curtis dissimilarity between sedimempiesam
distribution and image distribution vectors relate how well the data from twoethtfe
analyses agree. Table 5.16 contains values of Euclidean distance and Bisay-Curt
dissimilarity for all samples with good paired data, i.e., where both grab saamule

video image samples existed and both represented trusted data.
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Table 5.16. Euclidean distance (D_Eucl), Bray-Curtis dissimilarity (BCll}square

statistic value (ChiSq) and significance for sediment distribution datarggobm
separate analysis of grab sample and images.

Sample ID BC Dissim Euclid D ChiSq ChiSgSig KS D KS_sig
102 0.23 255 456.7 Sig 0.364 0.461 NS
1 04 0.18 19.2 22.2 Sig 0.364 0.461 NS
105 0.55 70.8 133.7 Sig 0.182 0.993 NS
107 0.28 28.1 935 Sig 0.364 0.461 NS
2_01 0.21 22.8 31.6 Sig 0.273 0.808 NS
2_02 0.61 77.9 3356.7 Sig 0.182 0.993 NS
2_07 . . . . . .

2_10 0.71 89.7 503.9 Sig 0.273 0.808 NS
3_01 0.60 72.4 188.8 Sig 0.364 0.461 NS
3_02 0.66 78.1 2659.7 Sig 0.364 0.461 NS
3_07 .

3_09 . . . . . .

3_10 0.36 44.3 59.7 Sig 0.364 0.461 NS
4 01 0.33 43.8 166.7 Sig 0.273 0.808 NS
4 02 0.45 52.0 543.3 Sig 0.364 0.461 NS
4 03 . . . . . .

4_05 0.42 55.7 1764.9 Sig 0.182 0.993 NS
4.1 02 0.73 83.5 10571.2 Sig 0.364 0.461 NS
4.1_03 0.26 28.3 38.5 Sig 0.364 0.461 NS
4.1_04 .

4.1_05 . . . . . .

5 01 0.14 25.0 11.0 NS 0.091 1.000 NS
5_02 0.15 18.2 251.1 Sig 0.273 0.808 NS
5_03 . . . . . .

5_05 0.01 14 9.0 NS 0.091 1.000 NS
5_07 0.00 0.1 5.2 NS 0.091 1.000 NS
5_08 0.49 56.8 99.3 Sig 0.273 0.808 NS
5_09 . . . . . .

5_10 0.48 53.3 801.4 Sig 0.636 0.023 Sig
6_01 0.38 39.7 1351.8 Sig 0.273 0.808 NS
6_02 0.66 77.5 4276.9 Sig 0.364 0.461 NS
6_03 0.34 42.2 102.0 Sig 0.182 0.993 NS
6_04 0.27 32.6 66.8 Sig 0.182 0.993 NS
6_05 0.38 48.3 148.1 Sig 0.364 0.461 NS
6_08 0.52 59.8 328.2 Sig 0.182 0.993 NS
7_03 0.69 74.2 456.5 Sig 0.273 0.808 NS
7_05 0.50 60.1 118.7 Sig 0.273 0.808 NS
7_06 .

7_09

7_11
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The values of D_Eucl and BC suggest moderate agreement overall between
sample and image estimates for percent weight and percent cover ofraegliaie size
classes, with a large range of distances and dissimilarities, and appsegetiyl pairs

with large disagreement (Figure 5.11).

Figure 5.11. Distributions of Euclidean distance (D_Eucl), Bray-
Curtis dissimilarity (BCd), and Chi-square statistic.

D_Eucl and BCd generally related the same relative information about agreement
between samples. Dark bars in Figure 5.10 represent where D_Eucl > 70 %. In most of
these cases, there is also high BCd (> 0.55).

Chi-square statistic values for all samples (except 3 from rock/bouldees)fac
exceeded chi-square critical value for 10 degrees of freedom (df). Tla#s should
be considered cautiously. First, it is not clear that the chi-square testifovdhese
data. Second, the data represent different attributes: percent mass, andcpeecage
area. Standardization might be required; for example, for samples such as 0bw@2 tha

inferred to have 100% rock or boulder by weight, because a sample was not recovered,
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and 85% coverage of rock/boulder was observed in the image, the resultant chi-square
statistic value exceeded the critical chi-square value.

According to the KS test done using the CRAN-R statistical analysigaseft
(Ihaka and Gentleman, 1996), only one station had different distributions: Station 5_10
(where no sample was recovered and, therefore, 100% rock/boulder inferred, but the
image revealed rock, cobble, and large pebbles). Thus, the chi-square testesiupge
nearly all distributions disagreed, but the Kolmogorov-Smirnov test suggested tiat near
all of them agreed.

The distance/dissimilarity statistics should probably only be used to jatigere
agreement between sample and image sediment distribution data. What becomes very
clear is that the chi-square statistic should not be calculated for data Mgtbocgaining
zeros or when many cells contain low values. For frequency data, usualigiagrhat
chi-square test is suspect is issued if >20 % of the cells contain counts < 5¢tinegdc
frequently with these samples. For these data, we hope that we have Typ#idaktatis

errors (erroneously rejecting the null hypothesis).

5.3.11. Geographic explanation?

Recall that the samples and images were not simultaneously acquired and not
necessarily at exactly the same locations. Therefore, the above saggkst a
hypothesis that where the largest differences occurred (large D, BC, or ¥/Might
expect to find more heterogeneous, variable spatial distributions. Examination of the
bathymetry or backscatter data might be able to support the expectation bas&teon
morphology and backscatter variation. We can also test the hypothesis bgiegami

video transect data. If actual spatial heterogeneity is not the causejiatkis the
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cause? Perhaps there is something about the sediment sample that does not get
discriminated by visual interpretation or perhaps the visual classificaieremwoneous
because the grains were incorrectly identified by visual examinatiere were eight

samples where D > 70 % (Table 5.17).

Table 5.17. List of sampled stations where
sediment distributions from grab sample and
image analysis had large differences (Euclidean
distance > 70 %).

Sample_ID Euclid_D
015 70.84
02_10 89.69
02_2 77.90
03_1 72.38
03_2 78.11
04.1 2 83.46
06_2 77.46
07_3 74.17

Highlighting the samples where D > 70 % on the bathymetry data provides only
some support for explaining the differences based on spatial location or pydwimit
transitions (Figure 5.12). Approximately half of these samples weretboatr a strong
morphological transition, or within a morphological region characterized by large
roughness features. The green circles are where better agreristexat, and red

asterisks are where agreement was relatively poor.
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Figure 5.12. Locations where large Euclidean distances
resulted between sediment distributions estimated from grab
samples and images.

Placing some of the paired sediment distributions on the map for selected dabglbxs
with relative level of agreement can help determine whether differencesel@ted to
geographic distributions of attributes (Figure 5.13). Categories levelstiegdevel of
agreement were: best (D<25; 0.3 < BCdis < 0.5), good (25 <D <42; 0.51 < BCdis <
0.55), moderate (42 < D < 55; 0.56 < BCdis < 0.66), low (56 <D < 70; 0.67 < BCdis <

0.74), and poor agreement (D > 70; 0.75 < BCdis < 0.82)

142



Figure 5.13. Sample stations colored by Euclidean distance between sediment
distributions estimated from grab samples and from images. Examples of the
distributions estimated and the relative quality of their agreement are sbiown f
selected stations. Sample data are in the upper plots (black) and image analysis
data are in the lower plots (green).

Categorizing relative agreement according to the ranges observed dicsdinalarity
and distance measures seems overly strict. If the grain-size distdbtrom images and

physical samples were offset by a value in only one size-class, then temegtreould
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be categorized as poor based on relative dissimilarity. This categorialitws no
flexibility in the interpretation of sediment grain size from images. Fornostaf the
grains were judged as being large pebbles rather than small, and coarsessdedned
to be granule, then agreement might be “low” or “poor” according to distance or
dissimilarity measures. However, most of the cases with “low” or “pooEeagent
were considered to be reasonably good. It can be seen in Figure 5.13 that “low” or
“poor” agreement sometimes resulted from differences in adjacent sszecal@gories
(where grain size had been estimated visually to be one class smaller othangshat
the sample contained). For instance, consider distributions from 07_3: the grab sample
analysis distribution determined 60 % sand (by mass), and the image analgibistidist
was 50 % in the class representing shell in the granule size class (G_Sh2grain:
mm). Perhaps what appeared to be granule-sized shell hash in the imagealys act
sand-sized material. Perhaps sand was misidentified as shell hash in the iethgps P
local spatial variation existed and both distributions were accurate.

All of the samplerersusimage sediment grain size histogram plots are provided

in Appendix B.

5.4. Conclusions

Estimating percent coverage area for each grain size class froooseaieo
imagery requires much more time and effort than assigning a class pastnating an
overall modal grain size from an image. In addition, there is considerableaimiyert
about whether particular patterns or colors in images represent grainaritalar size.

Grains often cannot be easily distinguished, if at all, except for occasioy@blains.
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In most cases, grains are overlapping, therefore, even pebbles and cobbles daulbe dif
to accurately assess.

If a crude classification is all that is required for ground truthing acoustg foat
verifying extrapolations of sample data, or for physical habitat chazatten, then
rapid and relatively accurate determinations of primary sediment famdsecresolved
from moderate to good quality seafloor video images. If more detailed grain s
distribution data are required, it is possible to use images from underwateasamer
estimate grain size distributions (or facies characteristics) thatdeod agreement with
sample data, as has been demonstrated by this study. These results analbdmwfuse
acquiring and processing images from shallow water is less time consamaihgss
expensive than complete grain-size analyses of sediments. Many more carages
acquired and analyzed, thus increasing spatial coverage. Also, imagesean r
information about some facies that cannot be recovered easily or at all pwamapling

devices.
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CHAPTER 6

6. BENTHIC HABITAT CLASSIFICATION,
CHARACTERIZATION, AND THE PROVISIONAL TRUTH OF

GROUND-TRUTH

6.1. Citation
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Greece, 28 June — 1 July, 2005.

6.2. Introduction

Acoustic remote sensing of the seafloor often involves multibeam echosounders
that provide very high resolution bathymetric and backscatter data from acaugiitg
and signal strengths. Increasingly, multibeam bathymetry and baeksuoatts are being

used as a basis for seafloor habitat maps, such as in Kostylev et al. (2001). Segiment
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facies maps have been generated from expert interpretation (Todd et al., 1999) and
hierarchical decision tree analysis of backscatter and bathymedr{2tatnell and
Gardner, 2004). Key to inferring seafloor facies and habitat characteiristits
bathymetry and acoustic backscatter data are ground-truth sample data.

Ground-truth data are critical to interpreting, classifying, and ctearaiag
remotely sensed seafloor data. Sample data are used to (1) validate pagsttsiodel
predictions, (2) build empirical models, (3) assign class nhames and perhapategsoci
characteristics to results of unsupervised classification, and (4) develoypededture
vectors for supervised classification of remotely sensed seafloor data.diRegaf the
approach, similar problems will likely be encountered, and similar decisidirize
required that are related to the so-called "ground-truth" sample data.

This work relates a combination of methods used to segment and classify
multibeam bathymetry and backscatter maps into apparent, "hypothetiatdios
habitat types. Derivative products of bathymetry and backscatter were used in
combination with ground-truth data. Physical samples and seafloor video images
constitute the ground-truth data. Segmentation and classification of batyyametr
backscatter was carried out by manual delineation, value ranges, locatgatexture
feature analysis, and spatial covariance model parameter values. Thideshafhstrates
how classifications and predicted characteristics are dependent on theetatesn and

spatial aspects of the ground-truth data.
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6.3. Data and analysis

The study area for this work was a portion of the subtidal lower Piscataqua River
Estuary that flows between New Hampshire and Maine, USA. The study area
represented a small part of the area surveyed for the Portsmouth Common Zifthse
(Mayer and Baldwin, 2001). Data used for this work were from surveys collacted
support of the Second International Conference on High-Resolution Surveys in Shallow
Water by Science Applications International Corporation (SAIC) in July, 20@1by
Simrad in June, 2001, in conjunction with University of New Hampshire Joint
Hydrographic Center and Center for Coastal and Ocean Mapping. The baghymet
dataset was from the SAIC survey that used a dual-head Reson 8125 multibeam
echosounder (Byrne et al., 2001). Backscatter data were from the survey &g &nur
UNH that used a Simrad EM3000-D multibeam echosounder. Positioning and
orientation for both surveys were recorded using an Applanix/TSS POS/MV 328alinerti
motion unit. Data were cleaned and processed according to hydrographic standards, then

gridded with 1 m grid cell sizes (Figure 6.1).
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Figure 6.1. Bathymetry gridded from Reson 8125 data and acoustic backscadtier mos
grid from Simrad EM3000D data for part of the Piscataqua River Estuary. In the
backscatter mosaic (on the right), dark represents low backscattethsttigyng

represents high backscatter strength. Coordinates are Eastings andg¥drtt)ifrom

UTM zone 19 north.

An existing sediment distribution map (Ward, 1995) for the study area served as a
standard for assessing the segmentation results. Segmentation of bgtlayahet
backscatter data grids was done initially by manually delineating the ntapggions
that appeared to be distinctive visually. Manual delineation of seafloor morphology or
backscatter is a simple, reliable way to impose spatial extent and couérhsfnct
facies and habitats. Human perception makes manual delineation quite effetitive i
case of excessively noisy data. However, manual delineation requires muckistyhje
and boundaries are not often clear. Analyst bias is a concern with manual aeliresati
is reproducibility. To avoid potential analyst bias, other segmentations p@reda
using technigues based on backscatter median value: classification of locad Four

histogram (LFH) texture features using unsupervised (Cutter et al., 2003), andssaper

schemes; and spatial covariance model parameters fit to variograms thyméiay.
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6.4. Results and discussion

Regions identified by manually delineating bathymetry and backscatps ma
based on distinctive morphologies and/or backscatter values tended to match the spatial
delineations for primary lithologies reported by Ward (1995). Those were: rock|,grav
and sand. The rocky regions and sandy region characterized by megarippleasigre
identified visually in the bathymetry. The remaining area correspondedanseg

identified by Ward (1995) to be primarily composed of gravel.
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Figure 6.2. Results from segmentation of bathymetry data from manual detineat
classification of backscatter value statistics, LFH texture featassification, and spatial
covariance model parameter classification.

Segmentation results from all the techniques resulted in regional groupings of

similar morphologies or backscatter values, and all correspond to the pricias/da

Ward (1995) to a reasonable degree based on visual comparison. What we sought,
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however, was a more detailed characterization, for sediment class, .atitlagugh it is
tempting to predict sediment class from a physics-based model such as Jaekson et
(1986), there were several reasons for avoiding that. These include: the operationa
frequency of the EM3000 sonar (300 kHz) that is higher than the range considered to be
valid for the Jackson et al. (1986) model; an offset that existed between levela@tom e
of the dual heads; the backscatter data were gridded and not corrected for seafloor
geometry; and because modelled sediment properties are ideal and thisestiudy ar
contained many coarse sediment mixtures.

A variogram from part of the backscatter dataset shows that the data wgrenois

highly variable, over the smallest sample interval distances (FigureTh8)variogram

Figure 6.3. Data noise or high variability is suggested by this variogram
for a subset of the backscatter data.
from the backscatter data also suggests that the backscatter dategereeraity useful
for segmentation and classification techniques that rely upon quantitativgptiessrof
local spatial or statistical properties. Also, the variogram supports the lose-pdss
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filtered backscatter data. Because the backscatter data werenisgra not corrected
for seafloor geometry, characterizations of seafloor attributestirese backscatter data
should be limited to homogenous regions with uncomplicated geometries.

With good quality, low noise data such as the multibeam bathymetry from this
shallow water study area, spatial variation can be used to discriminatehetome
morphologies. Similar to the approach described by Herzfeld (1993), variograes wer
used here to segment and classify bathymetric data into the three faciasybased on
differences in spatial covariance properties of bathymetry by fé€igsre 6.4).
Specifically, parameters from spatial covariance models fit to ezapirariogram data
by ordinary least squares were used for segmentation of bathymetry foioa pbthe
study area. Results of the segmentation of bathymetry using an index deddftm

covariance model parameters are shown in Figure 6.2.

Figure 6.4. Representative variograms for bathymetry by facies, snggéstt facies
had characteristic morphologies distinguishable by spatial properties.

Samples used to construct the existing sediment map (Ward, 1995) suggested that
within the gravelly facies, sediment grain size distributions could rangedravelly-
sand to sandy-gravel. Manual delineations of bathymetry resulted in di#fsrignm the
existing sediment map of Ward (1995). These differences were due to the multibeam
data resolution and coverage compared to the data used to construct the Ward (1995)
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sediment map. The new delineations were generally refinements of the Ward (1995)
sediment map that was based on sparse samples and interpretation of limitagecover
sidescan sonar data. Ground-truth data were needed to assess the accuracy of

delineations, and seafloor video images were used for the ground truthing (Figure 6.5).

Figure 6.5. Regions from manual delineation of bathymetry relating to teeghmary
facies; rocky facies is dark, gravelly is stippled, and sandy is rippled.o Wialesect data
are coded and labelled by facies interpreted from video images.

Away from boundaries between facies, video data corroborated predicted facies.
Ground-truth video data from the delineation corresponding to sand facies sometimes
revealed gravel facies and, hence, misclassification (Table 6.1). Mestwhsre video

indicated misclassification were from samples collected aloranaitional zone or at the

boundary (Figure 6.5).
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Table 6.1. Contingency table for counts of facies interpreted from video
imagery (V) by manually delineated bathymetric regions (2).

Count Sand(V)| Gravel(V)| Boulder(V) Rock(V) Other(V)
Sandy(2) 98 89 0 0 14
Gravelly(2) 0 131 0 0 0
Rocky(2) 1 61 21 42 75

99 281 21 42 89

The unsupervised LFH texture feature classification technique (Cugtey et
2003) results at the per-grid-cell level without spatial filtering resulteeviaral regional
groupings that corresponded to subtle morphologies that were evident in the bathymet
data upon close reinspection. Thus, the following questions arose: what might the
texture classes represent, and were they associated with readeuaiitin data artifacts,
or with processing artifacts? If real features were represented, énerthe differences
in texture and morphology associated with differences among sediment cliagsts
differences of morphology for a single sediment class organized byediffiéow
characteristics. To determine whether these texture feature cdassssbtle
morphological differences were associated with previously unidentified eetimny

attributes, seafloor video imagery data were examined (Figure 6.6).
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Figure 6.6. Supervised classification results LFH texture features from
pathymetry. Video transect labelled with facies identified from video
images.

Supervised classification uses prior information about characteristics known
exist. Techniques involving spatial or textural attributes help eliminateusesbias
and avoid introduction of artificial strict boundaries. Supervised classification of
bathymetry was performed using LFH texture feature prototypes develojahiag
locations where characteristics had been identified in video data. Resallg cle
indicated that if training sample locations where prototypes were developedaote
accurately located, then segmentations did not agree with known sediment distributions
Also, the rocky region contained several patches of shelly-, sandy-, andygravel
sediments. Within the region manually delineated as rocky according todagieess

features, only 21% of the non-overlapping imaged fields directly revealedTralle(
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6.1). Most of the image samples from the apparently rocky region revealed other
sediments, predominantly biogenic shell.

Without careful attention to both the location and characterization related by the
training sample image data, the results of the supervised LFH clagsifscdbne using
training samples from the rocky region shown in Figure 6.5 could predict sand, gravel
boulder, or other facies. Like many other texture features, the LFH is cdedtusing
an arbitrary spatial-integration scale. If that spatial-integmagcale covered more than
one sediment class zone, then the texture feature and resultant classitoatd
represent a combination class. If the training sample came from a srohlspabunded
by another facies with a characteristic morphology, then the textuvedeattually
would represent a morphology (and associated facies) different from thtifiédie
Several resultant segmentations from supervised texture featuiéaztien
misrepresented spatial distributions of the classes used for training. rébeke did not
necessarily represent failures of the texture feature as a dasifitool, but rather that
in some cases the morphology did not represent the facies identified in the grolind-trut
imagery. Additionally, some facies identified from the imagery did not haae ot
consistent bathymetric expression at the spatial scales involved with tilve texature

analysis.

6.5. Conclusions

Zonation is not always accurate because sometimes “regional-leviekioar
occurs locally. Ground-truth samples are not always able to provide verificatithre f

interpretation of a bathymetry or backscatter map. Sampling methodology and
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experimental design can lead to inaccurate assessments. Positionitgniycnd

habitat transitions can confound efforts to characterize the seafloor. tibpmg cannot

be constrained, characterization and classification detail level wiliiiedl. Some
guestions can be addressed even if ground-truth position uncertainty is high, however
compromise could required for the precision of characterization. Ground truthing high-
frequency MBES data from shallow water requires accurate positioning, anggerha
requires non-traditional methods. There can be cases where ground-truth data and
properties inferred from bathymetry or backscatter data do not agrémtlydtave

validity. Interpretation of habitat characteristics and classidicatmust account for the
possibility that different data sources and spatial-scale mismatcgbasmot lead to

different and apparently incompatible classifications.
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CHAPTER 7

7. SUPERVISED CLASSIFICATION OF GRIDDED MULTIBEAM
BATHYMETRY DATA USING LFH TEXTURE FEATURES FOR

HABITAT STRUCTURE CLASS PREDICTION

7.1. Introduction

Bathymetric surveys were conducted in 2004 off Saint John, USVI by the
Center for Coastal Monitoring and Assessment, Biogeography Program cANOA
Cruise Number NF-04-06-VI, aboard NOAA Ship Nancy Foster, was conducted in
support of near shore and deepwater habitat characterization research,(REDAA
The extent of the Saint John survey is shown in Figure 7.1; coordinates (in meters) are
from Universal Transverse Mercator (UTM) projection, zone 20 north. Bathyrdatac
were acquired using a pole-mounted Reson SeaBat 8101-ER multibeam echosounder.
Details about data collection equipment, procedures, and processing can be found in the

Data Acquisition and Certification Report (NOAA, 2004).
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Figure7.1. DTM from main bathymetric survey area from 2004 Nancy Foster mission
off Saint John, U.S. Virgin Islands.

Habitat classification and characterization within the Saint John sunewasea
primary interest to NOAA. Cutter et al. (2003) and Cutter (2005) have demonstrated the
applicability of LFH texture feature classification for segmeatabf bathymetric data
and generation of hypothetical habitat maps. Based on those initial studies, NOAA
requested that Local Fourier Histogram (LFH) texture featursifitzgion be applied to
the USVI bathymetry data.

Local Fourier Histogram texture features were developed for id=tidn and
retrieval of images from large databases based on image content. Technilsal deta

concerning the LFH texture feature can be found in Zhou et al. (2001). LFH
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classification has been applied to gridded bathymetric data in unsupervistt €Cat.,

2003), and supervised schemes (Cutter, 2005).

7.2. Data
Within the Saint John survey area, two subareas were chosen for griddigly at hi
resolution (1 m by 1 m) and use for demonstration of LFH classification: West, and

Central subareas (Figure 7.2).

Figure 7.2. Saint John West (SJW) and Saint John Central (SJC) subareas cbfmsidere
higher resolution gridding and classification.

Gridded bathymetric data from the two subareas were provided by NOAA far LBéli
texture feature classification. The data represented edited (hydragipbieaned)
CARIS HIPS MBES soundings, binned to 1 m with shoal-biased selection, exported to
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comma-separated ASCII-text files. Data were projected using UTMati@j, from
UTM zone 20 north, based on datum NAD83, with depths in meters (Pers. Comm., A.
Otter, NOAA, 2005).

The Saint John West (SJW) subarea data were chosen for LFH analysig becaus
ground-truth data from diver observations and video image analysis existed thare (F

7.3).

Figure 7.3. Video transects (black lines) and dive sites (points) from which groiimd-
data for habitat characteristics were available.

This work represents a demonstration of supervised classification of gridded

bathymetric data using LFH texture features. The gridded bathyméaisetlased was
164



the Saint John West (SJW) 2004 survey subarea, with 1 m by 1 m grid cell size (Figure

7.4).

Figure 7.4. High-resolution grid (1-m grid-cell size) of the Saint John Wa#{() S
subarea, used for texture feature analysis.

7.3. Analysis

7.3.1. Habitat Structure Class Training Data

Data from diver observations and video image analysis were provided by NOAA
for the SJW area. Observations from these data describing seafloor stweterused
for supervised LFH classification. Dive data contained a variable called
“HABITAT_STRUCTURE” and video data contained a variable called “STRUREU

that appeared to sufficiently describe features with bathymetricssipnethat would
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have characteristic LFH texture feature vectors and therefore e as&FH class
names. Within SJW, data from11 dive sites were available with diver identifigdthabi

structure class (Figure 7.5).

Figure 7.5. Saint John West (SJW) area bathymetry and dive sites labeled/&rith di
identified habitat structure class.

Also, data from a video camera deployment (STJ_Track8 2004) occurred within
SJW (Figure 7.6). Video images were visually interpreted as descriligattista and

Kendall (Unpublished), included here as Appendix C. These ground-truth data were used
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for determining training data classes and locations for developing presotyp

supervised LFH classification.

Figure 7.6. Saint John West (SJW) area bathymetry and video transects encoded and
labeled by video analysis results for habitat structure class.
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Dive data from sites within SJW identified three types of habitat struc&par
and Groove ; Colonized Pavement and Sand Channels; and Linear Reef (Figure 7.7,
labeled SG, CP+SC, and LR). Video data identified four types of structure within SJ
Colonized Pavement; Colonized Pavement and Sand Channel; and Scattered Rock, Coral,
and/or Sand; and Sand (Figure 7.7).

Within the SJW area, six habitat structure classes, listed in Table 7.1, were

identified by divers and video.

Table 7.1. Habitat structure classes identified by divers or video analydis,
abbreviated codes used during classification.

Code Structure Class Name Identified By

SG Spur and Groove Divers

CP+SC Colonized Pavement and Sand Channels Divers and Video Analysis
LR Linear Ridge Divers

CP Colonized Pavement Video Analysis

SRCS Scattered Rock, Coral, and/or Sand Video Analysis

S Sand (unconsolidated sediments) Video Analysis
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Figure 7.7. Saint John West (SJW) area bathymetry and video transects an@slive sit
encoded by habitat structure type class.
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Examination of the ground-truth dive and video data in conjunction with the
bathymetric data led to choices of locations where LFH texture featct@ ypeototypes
would be generated. It appeared that some of the ground-truthed interpretations fit
certain morphological patterns evident in the bathymetric data, however some
interpretations seemed to occur across several morphologies. For instamimkdhe
derived structure type “Scattered rock, coral and or sand” extended acrosppéated
to be distinct bathymetric feature types in the DTM (Figure 7.7). Siyildwe dive data
habitat structure type “Spur and groove” occurred in some places where the DTM did not
appear to have a noticeable spur and groove pattern. This is not a criticism of the ground
truth data, but rather an explanatory basis for the choice in training point lodatioims

LFH analysis.

7.3.2. Training samples location coordinates

Figure 7.8 shows the ground-truth data subsets initially selected as potential
training sample locations. Six classes representing types of diveffiehfbitat
structure or video analyst-identified structure were considered. It wersnileed that
training samples would be developed for locations from which two types of structure
were identified by divers (Spur and Groove, and Colonized Pavement and Sand
Channels), three types of structure identified from video (Sand; Colonized Payantent
Scattered Rock, Coral, and/or Sand), and one location where video identified Colonized
Pavement, but nearby dive data identified Spur and Groove (Figure 7.7 and Figure 7.8;

Table 7.2).
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Figure 7.8. Locations of potential training samples for supervised atassifi
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Table 7.2. Coordinates of potential training samples for LFH classificatioaimf ¥»hn,
western subregion ("SJW") representing selected dive and video data. Coordimates f
UTM zone 20 north, WGS-1984. Preclass_ID codes key: Sv = Sand from video; CPSCd
= Colonized Pavement and Sand Channel from divers; CPv = Colonized Pavement from
video; sSRCSv = scattered Rock, Coral, or Sand from video; vCPdSG = Colonized
Pavement from video and Spur and Groove from divers; SGd = Spur and Groove from

divers.

StationID Easting (m) Northing (m) Preclass _ID
vS1l 307639.70 2018884.25 Svl

vS2 307632.27 2018873.65 Sv2

vS3 307624.20 2018863.56 Sv3

vS4 307616.70 2018853.20 Sv3
MSRO128 306865.35 2018483.89 CPSCd1
MSRO189 306983.16 2018631.04 CPSCd2
MSRO199 306971.26 2018498.33 CPSCd3
vCP1 306920.86 2018365.39 CPv1
vCP2 306909.66 2018360.24 CPv2
vCP3 306899.11 2018617.91 CPv3
vCP4 306907.00 2018625.71 CPv4
v_sRCS1 307399.69 2019049.79 sRCSv1
v_sRCS2 307389.42 2019048.28 sRCSv2
v_sRCS3 307379.95 2019044.13 SRCSv3
MSRO201 307321.91 2018660.87 vCPdSG1
MSRO150 307371.53 2018651.52 vCPdSG2
v192 307401.31 2018656.01 vCPdSG3
v193 307393.42 2018651.32 vCPdSG4
v194 307385.57 2018646.84 vCPdSG5
MSRO160 306829.29 2019003.41 SGd1
MSRO192 306829.61 2019141.78 SGd2
MSRO193 306692.02 2019132.08 SGd3
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One location representing each of those structure types (or combinatiopss)fisas

used to develop initial training sample LFH prototypes (Figure 7.9; Table 7.3).

Figure 7.9. Locations of training samples labeled with habitat clzetsiins from

divers or video analysis.
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Table 7.3. Coordinates of training samples for LFH classification of Saint
John, western subregion ("SJW") representing selected dive and video data.
Only one point from each interpreted class used for this classification.
Coordinates from UTM zone 20 north, WGS-1984. Preclass_ID key: same as

in Table 7.2.

StationID Easting (m) Northing (m) Preclass_ID
1-vS1 307639.709 2018884.252 Svl
2-MSRO128 306865.351 2018483.89 CPSCd1
3-vCP1 306920.863 2018365.392 CPv1
4-v_sRCS1 307399.696 2019049.799 SRCSv1
5-MSR0O201 307321.917 2018660.87 vCPdSG1
6-MSRO160 306829.291 2019003.41 SGdl
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Preliminary analysis suggested that there were several arifiaitte bathymetric
grid apparently related to the survey operation, processing, and/or gridding.tifEogsar

were most pronounced in the outer beam regions of the multibeam swath (Figure 7.10).

Figure 7.10. Noise, survey- or gridding-aritifacts in the gridded multibeam
bathymetry.
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An additional training sample location was included in attempt to representitaetsirt
as a class, generally referred to as “Noise” hereafter. The situs&tigpe training
sample locations along with the noise class location (in the western pawptSdad for

initial LFH classification are shown in Figure 7.11 and listed in Table 7.4.

Figure 7.11. The seven locations with training data used for LFH texture feature
classification.

176



Table 7.4. Coordinates of training samples for LFH classification of Saint Jekterw
subregion ("SJW") representing selected dive and video data and a noisarolales s

Only one point from each interpreted class used for this classification. Coosdnoate

UTM zone 20 north, WGS-1984. Preclass_ID key: same as in Table 7.2, except for N =

noise.

StationID Easting (m) Northing (m) Preclass_ID
1-vS1 307639.709 2018884.252 Svl
2-MSRO128 306865.351 2018483.890 CPSCd1
3-vCP1 306920.863 2018365.392 CPv1
4-v_sRCS1 307399.696 2019049.799 SRCSv1
5-MSR0O201 307321.917 2018660.870 vCPdSG1
6-MSRO160 306829.291 2019003.410 SGd1
7-Noise 306136.000 2018465.500 N1

7.3.3. Local Fourier Histograms (LFH)

Local Fourier Histogram (LFH) texture features were calcdlateng the

procedure described in Cutter et al., (2003) and Cutter (2005). LFH feature vectors were

accumulated within 15 by 15 m blocks around each grid cell. Supervised classification of

LFH feature vector data was implemented using a minimum distanceietasgthod

described in Cutter (2005).

7.4. Results and Discussion

7.4.1. Local Fourier Maps (LFMs)

The LFH texture features represent distributions of three (or optionally,domponent

values. Development of the LFH texture features involves a preliminary stag duri

which products called Local Fourier Maps (LFM) by Zhou et al. (2001) arergjexal.

Each cell of the LFM represents the value of a Fourier transformaegfffor the series

177



of data in the neighborhood immediately surrounding each grid cell. The three LFM’s
generally relate to the behavior or variance of the data at relatively lesiym, and
high spatial frequencies, with the particular spatial frequencies degstoy the data
grid cell size and also how distances are measured with respect to neigidsbmcell
groups.

LFM1 represents coefficient 1 that can be considered to represent theearanc
magnitude of a spatial frequency (f) occurring at 1 cycle per period (tivel jpeing 8
grid cells and thus 8*1 = 8 m). Similarly, LFM2 represents 2 cycles per period, and
LFM3 represents 3 cycles per period. Therefore, in a non-strict but intuitive (Sees
Cutter 2005), LFM1, 2, and 3 can be considered to represent feature length scales of 8, 4,
and 2.7 meters for this 1-m cell-size data grid. Components 1, 2 and 3 from the Fourier
transform are used here for the LFH classification, as implement€dtbsgr (2005).
LFM'’s are developed from the bathymetric data alone without consideraticarohd
samples or spatial-integration scales.

LFM1, 2, and 3 are shown in Figure 7.12, 7-13, and 7-14.
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LFM1 (Figure 7.12) is color coded using the red band of an RGB colorspace, with

intensity representing weighted value (1000x).

Figure 7.12. Color-coded values for local Fourier transform component 1 (LFM1),
representing low spatial-frequency variation; higher intensities pré&gger values.
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LFM2 (Figure 7.13) is color coded using the green band of an RGB colorspace, with

intensity representing weighted value (2000x).

Figure 7.13. Color-coded values for local Fourier transform component 2 (LFM2),
representing intermediate spatial-frequency variation; higher inesns#present larger
values.
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LFMS3 (Figure 7.14) is color coded using the blue band of an RGB colorspace, with

intensity representing weighted value (2000x).

Figure 7.14. Color-coded values for local Fourier transform component 3 (LFM3),
representing high spatial-frequency variation; higher intensities eyresger values.
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7.4.2. LFMRGB psuedospectral

It has proven useful to combine these color coded LFM’s into a pseudospectral-
like image referred to as LFMRGB by Cutter (2005). The LFMRGB immageesents
color combinations and intensities that visually relate the component spajisdricees
and their relative magnitudes, from all three spatial frequencies at onnee, kiee
LFMRGB visually depicts what the LFH basically signifies: a texfaeture vector

simultaneously representing multiple roughness scales (Figure 15).

Figure 7.15. The pseudospectral LFMRGB map, an additive combined product of the
color encoded products from low, intermediate and high spatial-frequencyorariati
(Red: LFM1, Green: LFM2, Blue: LFM3). See text for detailed explanation.
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In the LFMRGB image, bright red occurs where low spatial frequency roughnes
dominates; where green is bright, middle spatial frequency roughness domindtes; a
bright blue represents dominance by high spatial frequency elements. Combinations of
colors occur that represent combination of roughness element frequency bands. For
example red and green combined in equal proportions to produce yellow, therefore
yellow would be indicative of an equal combination of low and medium frequency
elements. In this case, components representing spatial frequenciegyatedme
accommodate value ranges of 8-bit color bands, therefore yellow reprepgaits e
combinations of weighted low and medium spatial frequency component values.

The LFMRGB map (Figure 7.15) reveals the strong presence of noise or data
artifacts occurring at the medium and high spatial frequencies (ap@tekyn» 2 m to 4
m feature lengths), seen as blue-green linear bands along-survey-traekew Epatial
frequency (red in Figure 7.15) is dominated by signal from the seafloor morphological
features, and some combination of low and medium morphological feature combinations
are evident (as yellow in Figure 7.15) between the noise bands.

Texture feature vectors are constructed using the data from LFM1, LiRBI2, a
LFM3. At any grid cell, an LFH texture feature represents the diswibofi the values
of LFM1, 2, and 3 within a specified block size, or spatial-integration scale. For
additional technical and mathematical details, see Zhou et al. (2001), Culi€2@D3),

and Cutter (2005).
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7.4.3. LFH Classification of Habitat Structure

Supervised LFH Texture feature classification, using prototypes developed at
training sample locations for the 6 habitat structure classes and the 1 asss€Table

7.4) resulted in the hypothetical habitat map shown in Figure 7.16.

Figure 7.16. Map segmentation produced using supervised LFH classification
with all training data classes.
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The LFH class “Noise” (colored black in Figure 7.16) accounted for some of the
data artifacts. However, some of the other LFH texture feature ckgbegre
influenced by noise, as the survey lines are evident and composed of two clasgde mea
represent levels of habitat structure. Specifically, the Colonized PavemideBaad
Channel class from dive data (CP+SC_d), shown in blue, was attributed to much of the
noisy data (Figure 7.16). The Scattered Rock, Coral, and/or Sand class from video data
(sRCS_v), shown as magenta in Figure 7.16, was also attributed mostly to noise. The
reason for this result could be that training samples were located in noise,tbe theH
feature vectors for the actual noise and the classes CP+SC_d and sRCS imiegre s
Eliminating the CP+SC_d and sRCS_v classes from consideration results iapthe m

shown in Figure 7.17 that represents four habitat structure classes.
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Figure 7.17. Map segmentation produced using supervised classification. Classes
that were influenced by noise or artifacts are shown as white. The segomentat
from the remaining classes corresponds to morphological regions evident in the

bathymetry.

The noise-eliminated LFH hypothetical habitat class map (Figure 7.17)eg{zes
the structure levels of: Sand (SANDv); Colonized Pavement (CPv); Spur and Groove
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(SGd); and either Colonized Pavement and/or Spur and Groove (CPv+SGd, previously
also called “vCPdSG”). Recall the CPv+SGd class was developed for atoahtere

the dive and video data differed within a small distance.
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7.4.4. Evaluation and Preliminary Validation

If we examine the ground-truth data and the LFH class map simultaneously
(Figure 7.18), we see that there appears to be good agreement between firatibeassi

made by video analyst and spatial distributions depicted by the LFH map.

Figure 7.18. Supervised classification results and video and diver classifscati
The same colors were used to represent class levels for the texture ¢ttaes
and diver/video data classes. Class labels are included on the map.
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Since the LFH classes mixed with noise are removed, we see that the €P+SC
class described by divers occurred in three locations within the data rgsesreThe
only class that is clearly inconsistently described by the ground-trutlacctie LFH
class map is the “Scattered Rock, Coral, and/or Sand” class from the videcetateypr
data. The LFH classification did not discriminate that class from noise, edidted
other classes occurring where video sRCS_v occurred. Otherwise, the “Sasd” cla
distribution predicted by LFH appears consistent with the ground-truth data,satheoe
“Spur and Groove” LFH class.

The LFH class CPv+SGd is difficult to assess because dive data appear to be
somewhat inconsistent with video data. If we believe the video data, then the CPv+SGd
LFH class, shown as gray, would be the same as the CP_v class, shown asguesn (F
7.18). In that case, the match between the LFH class map and the video data would be
better in the eastern part of SJW (nhear 307400, 2018700). Figure 7.19 reproduces Figure

7.18, without intrusive labeling, representing a noise-eliminated LFH hypoihedizitat
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class map with ground-truth data.

Figure 7.19. Supervised classification results and video and diver classifscati
The same colors were used to represent class levels for the texture ttses
and diver/video data classes. The video-transect ground-truth data geneifgily ve
LFH texture feature classification.
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7.5. Accuracy Assessment

7.5.1. Initial overall assessment

Video data from STJ_Track8 2004 will be used for initial validation and
accuracy assessments of characterizations predicted from Ldsclasxcept for
colonized pavement, the prediction accuracy of several of the LFH classaseabpav,
particularly for the CP+SCd (colonized pavement and sand channels accordingdp dive
and sRCSv (scattered rock, coral, and/or sand according to video) classes.8)abile 7

no consideration is given to complicating factors.

Table 7.5. Contingency table for habitat structure LFH class
(LFH-OrigClass) by habitat structure indicated by video

(VidStruct).

Count CP+SCv|CPv SANDv | sRCSv

Row %

CP+SCd |3 60 0 15 78
3.85 76.92 ]0.00 19.23

CPv 0 40 1 12 53
0.00 75.47 11.89 22.64

CPv+SGd|1 18 3 9 31
3.23 58.06 [9.68 29.03

NODATA |0 1 1 1 3
0.00 33.33 |33.33 |33.33

NOISE 0 0 0 0 0

SANDv |1 8 4 6 19
5.26 42.11 |21.05 |31.58

SGd

sRCSv |0 14 4 8 26
0.00 53.85 |15.38 |30.77
7 146 14 53 220

Recall that CP+SCd and sRCSv LFH classes were considered to be confounded by

artifacts in the bathymetric grid. Therefore, they were ultimateihgbined into the
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“NOISE” class. The “NOISE” LFH class represented bathymeid/data dominated by
artifacts, and contained 104 of the 220 video observations that were coincident with LFH

prediction locations (Table 7.6).

Table 7.6. Contingency table for VidStruct By LFH-
NewClass2 LFH classes with NOISE LFH class containing
Noise, CP+SCd and sRCSv.

Count CP+SCv|CPv SANDv | sSRCSv
Row %
CPvor |1 58 4 21 84
CPv+SGd1.19 69.05 [4.76 25.00
NODATA|O 1 1 1 3
0.00 33.33 |33.33 |33.33
NOISE |3 74 4 23 104
(and 2.88 71.15 (3.85 22.12
CP+SCd
or SRCSv
SANDv |1 8 4 6 19
5.26 42.11 |21.05 |31.58
SGd 2 5 1 2 10
20.00 [50.00 |10.00 |20.00
7 146 14 53 220
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7.5.2. Colonized pavement

When the LFH classes “CPv” (colonized pavement according to video data) and
“CPv+SGd” (colonized pavement according to video data, but spur and groove according
to divers) were combined, the result was that 58 of the 84 cases where CPv or CPv+SGd
was predicted by LFH, ground-truth video confirmed to be CPv by video. Hence, in this
case we are ignoring diver data that suggested that spur and groove existdienea
video indicated colonized pavement. The prediction of CPv by LFH was (58/84) 69 %
accurate when allowed to also contain the CPv+SGd class.

For the case where we did not combine CPv and CPv+SGd classes, LFH predicted CPv,
40 of 53 cases where CPv was predicted by LFH, ground-truth video confirmed to be
CPv by video. Under these circumstances, the prediction of CPv by LFH was (40/53) 75

% accurate (Table 7.7).

Table 7.7. Contingency table for VidStruct by LFH classes
with CPv and CPv+SGd classes considered separately.

Count CP+SCv|CPv SANDv | sSRCSv

Row %

CPv 0 40 1 12 53
0.00 75.47 ]1.89 22.64

CPv+SGd|1 18 3 9 31
3.23 58.06 [9.68 29.03

NODATA |0 1 1 1 3
0.00 33.33 |33.33 |33.33

NOISE 3 74 4 23 104
2.88 71.15 [3.85 22.12

SANDv |1 8 4 6 19
5.26 42.11 |21.05 |31.58

SGd 2 5 1 2 10
20.00 |50.00 |10.00 |20.00
7 146 14 53 220
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7.5.3. Sand

The prediction of “SANDvV” (sand according to video data) by LFH was (4/19) 21
% accurate according to ground-truth video. LFH predicted “SANDvV” in 15 cdsarew
either sSRCSv (scattered rock, coral, and/or sand), CPv (colonized pavement) S@dCP+
(colonized pavement with sand channels) existed according to video data. However,

there are additional factors to consider: similar classes and samplimggmve

7.5.4. Similar classes

If the video classification “sRCSv” (scattered rock, coral, and/or sand) is
considered to represent mostly unconsolidated material, and to be indistinguishiadle in t
bathymetry from unconsolidated sand (“SANDv”), then SANDv and sRCSv can be
combined into a single class called unconsolidated. The LFH results suggtdsishat
two classes were not really distinguishable by texture.

When SAND and sRCSv classes were combined into a single class (UNCONS),
the accuracy of LFH classification improved. Under the circumstancewkél classes
SANDv and sRCSv were combined into a class called UNCONS (unconsolidated), the

prediction of UNCONS by LFH was (10/19) 53 % accurate (Table 7.8).
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Table 7.8. Contingency table for VidStruct by LFH class,
where structure classes “SANDv” and “sCRSv” were
combined into a single class representing unconsolidated
material (“UNCONS").

Count CP+SCv | CPv UNCON

Row % S

CPv 0 40 13 53
0.00 75.47 24.53

CPv+SGd|1 18 12 31
3.23 58.06 38.71

NODATA |0 1 2 3
0.00 33.33 66.67

NOISE 3 74 27 104
2.88 71.15 25.96

SGd 2 5 3 10
20.00 50.00 30.00

UNCONS|1 8 10 19
5.26 42.11 52.63
7 146 67 220

7.5.5. Sampling coverage

The relatively low accuracy for LFH prediction of sandy or unconsolidated
structure habitats was also a function of the video sampling. Very little videagever
existed in the regions where “SAND” was predicted by LFH (Figure 7.20).mEjperity
of the area predicted to be “SAND” by LFH was considered to be valid and more

accurate than indicated by video data according to inspection of the bathymetry
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Figure 7.20. Map segmentation produced by supervised classification of LFH texture
features. Arrows indicate the locations of the few locations where sand waieident
from video imagery.

7.5.6. Spur and Groove

Spur and groove habitat structure was identified only by divers. Formal
assessment of LFH class prediction for spur and groove (SGd) was not done because

nearly all dive locations were in bathymetric noise.
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7.6. Conclusions

Noise and data artifacts were revealed by LFMRGB, allowing develupoha

specific texture class for representing noise. In addition, the LFMjbtrprovide a
means for filtering the data noise, prior to analysis and classification.

The texture feature analysis of the bathymetry predicts that the saméxiksts
on the tops of some of the reef plateaus (Figure 7.18). Whether that is true or not is not
determinable from the texture feature analysis. Additional constraintsegalaced upon
the classification of the LFH texture features by either consideddigi@nal data or
incorporating other attributes (suggested by backscatter value, for instértbat is not
done, then similar morphologies will produce similar textures, and not be separated, eve
if the substrates or structures differ.

Distinct types of seafloor materials can be organized to generatersimila
morphologies that texture alone will not discriminate. In general, howevdtrf-the
texture feature classification technique, using only gridded bathymatecwlorks quite
well to predict spatial distributions of seafloor morphologies and strucassed, on a

cell-wise basis.
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CHAPTER 8

8. SUMMARY AND CONCLUSIONS

Mapping seafloor habitats was a primary goal of this dissertation work and wa
accomplished using bathymetry and acoustic backscatter data from amltibe
echosounders (MBES). This dissertation also reviews habitat concepts, inaduita¢
classification schemes, and habitat mapping efforts. MBES bathymetrgrahsecoustic
backscatter data provided means of distinguishing habitats and facies.tdHainita
facies could often be distinguished from high-resolution MB bathymetry grats.al
When the seafloor contained even subtle, but consistent, morphological patterns, habitats
could be delineated by eye from MB bathymetry. Apparent habitats wereadetine
using analyst interpretation (manual delineation), and using texture aregsspatial
covariance properties. Manual delineation was suitable for producing crucieatielns
of primary facies and habitats that corresponded to regions composed of prominent
morphological features or patterns. When bathymetry or backscatteretatatvinigher
resolutions, it was more difficult to determine where to define boundaries betause
many feature details could be distinguished. Individual features such as rockpsutcr
boulders, and subtle morphological differences that were not visible in lower-r@solut

maps could be seen in higher-resolution maps. Delineation then became a problem of
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feature-identification rather than zonation. Hence, the efficacy of manuadaladin
methods can be reduced when data are high resolution.

Texture analysis and spatial covariance properties provided the basis for
guantitative methods used to infer spatial distributions and zonations of seafloor
characteristics. Texture feature analysis and spatial covariassédicktion served to
overcome some of the bias of manual delineation methods for bathymetry and baickscatt
maps. Texture feature analysis could distinguish many different morphoéogies
identify them on a per-grid-cell basis. Per-grid-cell texture-featassification is an
improvement over manual delineation because it is often unclear where boundaries
should be drawn or if boundaries should be drawn at all during manual delineation.
Boundaries are not always apparent in seafloor bathymetry or backscatteDdasions
between facies, habitats, or morphological regions sometimes exist, bot afeen very
distinct. Transitions between facies and habitats can be subtle or undetediatitat
patches can be small. In these cases, the automated methods that are bassttcah stat
distributions of attributes measurable from bathymetry or backscatper caa produce
better delineations.

The results of texture feature classification was a segmentatiorns #estdntially
a delineation of every map grid cell. Often, segmentation results resesite of
manual delineation because of feature zonations. However, segmentation methods are
able to distinguish and classify much smaller map units than manual delineatimusne
Segmentation by texture can produce products that appear noisy or overlydretorsy
with many small units, and hence difficult to interpret and verify. Ground-truthiag dat

representing similar spatial scales to the smallest variations iegheesatation products
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are required to validate that different textures, for instance, correspond terdiffe in
seafloor attributes. Backscatter data might be able to suggest tharndiffe appear to
exist for seafloor characteristics, but backscatter data must alsours druthed.

Linkages were established between characteristics assessed usiogl pingb
samples and seafloor video imagery. By regrouping and reanalyzing data fsem the
different sources, inferences could be made using either source. Collecting and
interpreting imagery is generally less expensive in terms of time and. fibata from
both are required from some locations in order to establish correspondence, but then data
from imagery could be used alone for characterizations. Efforts that make grotind
data from different sources compatible enhance the ability to make &ccurat
characterization of seafloor attributes.

Imagery allows non-invasive inspection and larger coverage area than physical
samples, but image detail can be limited. Also, assessing video image ssedoence
seafloor characteristics or biological resource assessments cdfiché dnd tedious. A
mosaiced image produced from a sequence of images using co-registéatinques
can overcome some of the difficulty involved with analyzing video sequences. However
producing mosaics can be time-consuming and mosaics can incorporate errors and ca
obscure features.

Results suggest that to achieve accurate counts of organisms or seafloes featur
from analysis of video imagery, care must be taken to ensure that the datsssample
represent non-overlapping fields-of-view. Mosaics eliminate the need to igeate
review portions of a video-image sequence to determine the bounds of non-overlapping

sampled fields-of-view by showing the entire coverage area. Imagaasncsn
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facilitate interpretation of processes occurring at spatial-snatedearly evident in
individual video image frames, and expand the capabilities of characterization. The
mosaicing (image co-registration) process can be time-consuming, anata@osr
registration is not possible for all imagery. Video-image sequences or indivichges
from discrete locations can be as, or more, effective for determiningaeaflo
characteristics or assessing biological resources. It is impartaontrol how
characteristics are measured or counted in video image sequences to avoid bias and have
consistent, reproducible results.

Spectral model parameters that describe seafloor roughness that arantrtport
empirical and theoretical models relating acoustic backscatteaflo@eproperties can
be estimated from sediment profile images. The combination of two spectrakpara
estimates (slope and intercept) provide a better discrimination of seaftoes and
classification of seafloors than estimates of roughness from vertewaltiein differences
or RMS deviation. Spectral slope value and intercepts estimated from SRihanettve
range reported for published values. The range of SPI spectral slope value®(-2.60 t
2.05) suggests that spectral slope (or spectral exponent) should not be considered a
constant term for models, even for the spatial frequencies of microtopogtapbidas.
The relationships between spectral slope and intercept values and physical and biogeni
roughness and associated seafloor facies suggest that local seafloonzamafiacies
distributions should be accounted for when interpreting and applying roughness spectra
parameter values.

The number of classes and spatial-integration scale had to be specifiedilgrbitra

for unsupervised classification of seafloor bathymetry. A single sjatigggration scale
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was generally not sufficient for a study area; each morphologicalrégnded to have a
distinct spatial covariance properties. Hence, spatial covariance ofrstityor
backscatter could be used for classification and segmentation of habitats. s, it
apparent that spatial covariance properties might provide a way to optimizneglef
spatial-integration scales used for unsupervised classification. Howevernpibe of
number of classes for unsupervised classification would remain arbitrary.

Supervised classification provided a way to infer seafloor charactefistientire
bathymetric survey maps based on only sparse ground-truth data, and the number of
classes were predetermined from ground-truth data. Results reported in grisiiiss
from supervised classification of MBES bathymetry using texture feshad good
correspondence with hold-out ground-truth data and spatial distributions of morphologies
visible in the map. It was found that the verity of accuracy assessmentgrron-
truth data were provisional upon the circumstances of data collection, including
positioning error. Positioning error also allowed inaccurate classificatifotie
positions of ground-truth data used for developing classification prototypes were
inaccurate, then classes assigned to morphological textures at the repatieddamuld
have been intended for nearby, but different morphologies. It is critical to adoount
heterogeneity if ground-truth positioning data have high uncertainty relatttie detalil
of the bathymetry or backscatter data used for classification.

It is important to allow for unknown, unidentified classes when implementing
supervised classification to prevent data from being forced to fit intofatassin

scheme developed from observations for only part of the area studied. Good, robust
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classification results can be produced using supervised classificatiahdmase
bathymetric texture and sparse ground-truth data

Supervised classification of bathymetric texture was implemented ¢do@icior
data artifacts and prevent artifacts from affecting classificatiénstinct types of
seafloor materials can be organized to generate similar morphologiésxtina¢ alone
will not discriminate. In general, however, the LFH texture featussitieation
technique, using only gridded bathymetric data, works well to predict spatidbualisns
of seafloor morphologies and structure classes on a per-grid-cell basis @nasisto
data artifacts. If systematic methods are included to account for condiatraotnot fit
a classification scheme, it is possible to produce consistent, accurate, andddwaibtat
maps and seafloor characterizations using semi-automated methods including
classification using LFH texture features, spatial- and roughness-padeneters, or

acoustic backscatter data.
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APPENDIX A

ROUGHNESS SPECTRA PARAMETERS FROM SEDIMENT PROFILE

IMAGES FROM THE LOWER PISCATAQUA RIVER

A.1l. Introduction

It has been shown that seafloor roughness spectra can be described usieg a pow
law model, for spatial scales from centimeters to many kilometersafaiiayes,
1985). Parameters describing the relationship between spectral power (tuaehpli
and spatial frequency have been used for modeling acoustic backscattérefreaaftoor
(Jackson et al., 1986; APL-UW, 1994; Sternlicht and de Moustier, 2003). Although the
backscatter models use two-dimensional forms of the parameters, typically the
parameters are estimated from one-dimensional profiles that aretectthaom seafloor
elevation data from singlebeam and multibeam echosounders, stereophotographs, diver
traces (Fox and Hayes, 1985; Stanic et al., 1988, 1989; Briggs, 1989; Jackson and Briggs,
1992) or laser lines.

This study uses sediment profile images to provide the seafloor elevatioa profil
data. Profiles from digitized sediment profile imagery (SPI) imagesqealata series
with a sub-millimeter resolution and 10 to 15 cm length. Thus, these images extend into
a new spatial frequency band for seafloor spectral roughness measureheesgpatflal

frequency band represented by SPI images is important because it encoitpgasses

206



acoustic wavelength scales for many of the high-resolution multibeamoeciuess,

sidescan sonars, and interferometric sonars now in use.

A.2. Methods

Sediment profile images were acquired using a Diaz digital model SPI tha
incorporated a Minolta Dimage-8 digital camera. Images were calleaté9 May,

2003 from eight sites in the lower Piscataqua River, east of Newcastie, Islew
Hampshire (Table A.1). The UNH research vessel ®Nf Challengemwas used for the
deployments.

A camera deployment involved lowering the system by winch wire to the
seafloor, whereupon slack is provided for 20 to 30 s. During that time, the camera prism
penetrates into the seafloor. In automatic operation mode, the camera dedosrd beg
s time delay sequence after which two images are captured with a 5-belslagn
them. The camera was used in remote-controlled mode for this deployment. Remote
control was accomplished using a cable from the camera to the surfacehassel
terminated in a manual triggering device and carried a live video signattisooamera
for remote monitoring of the operation. The time delay between touchdown and image
capture allows the prism time to penetrate into the seafloor at a rate lednyk water-
filled piston that acts to dampen the penetration rate. During each deploymeiot, two t
four pseudoreplicate images were captured.

Analyses
Roughness spectra were calculated using the method of Briggs (1989). Images

from sites 1, 5, 6, 7, and 8 (Figure A.1) were used to estimate spectra. Firstfltor se
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interface was traced manually from the digital image, scaled angaxknown spatial
scales so that data were generated in cm size-units rather than pixelsafitioe peofile
data were a set of elevations and distances, (x,z). These data were subrthited t
processing steps described by Briggs (1989) and implemented in D. Percival’'s
FORTRAN code (unpublished). The first step was a pre-whitening operationofsee F
and Hayes, 1985) accomplished by taking the first differences of the etesaties then
removing the mean. A 20% cosine taper was applied to the differenced, detrended serie
A fast Fourier transform (FFT) was applied, producing coefficient valhesevsquared
magnitudes were used as the uncorrected periodogram. The periodogram waslcorrecte
for the prewhitening operation and represents the estimated power spectrum.

The estimated power (S) and frequency (f) were log-transformed andra linea
model fit to the log-log data. If the power approached white noise (flargpydt the
higher frequencies, then those frequencies were excluded from the fit dimedne
model was recalculated to the restricted range. Noise rejection wessaecin all cases
for the six images analyzed. The slope of the linear model and the intercepa@ala s

frequency of 1 cycle/cm were recorded as the spectral parameters.

A.3. Results and Discussion

The SPIimages analyzed came from two distinct facies within the lower
Piscatagua River. Images 1 — 4 came from a gravel deposit and 5 — 8 were from a rippled
sand dune (or sand wave) field that was easily distinguishable in bathymelsifrgnn
multibeam echosounder data. Spectral slopes and intercepts were distimet\iar t

facies.
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The spectral slope for the SPI image profile from the gravel deposit was -3.40
(Figure A.2), much larger than published values for gravel and larger in magnitande tha
the maximum value suggested by the APL-UW (1994) model. The spectral slope, as
estimated here, is the negative of the one-dimensional (1-D) form of the kpectra
exponent (), as it is denoted by the acoustic modelers. The 2-D form of the expanent,
is = 1+ 1 (Jackson et al., 1986). Therefore, in this case, the valydrom the
gravel deposit of the lower Piscataqua River, was 4.40. The APL-UW (1994) model
suggests an upper limit of 3.99 for the two-dimensional (2-D) form of the spectral
exponent parameter. The spectral intercept for the gravel deposit SPI image, 0.00071,
was also high relative to published values.

The absolute values of the spectral parameters for the the rippled sand dunes were
not unusual with respect to published values. Spectral slopes for SPI image pfiles fr
the rippled sand dunes ranged from -2.16 to -2.57, and intercepts ranged from 0.00015 to

0.00030 (Table A.2, Figure A.3, Figure A.4).

A.4. Conclusions

The sediment profile camera does not penetrate well, or at all sometitoes
sediments of pebble to cobble size. Therefore, the SPI camera is not a robust tool for
examining in further detail the apparently unusual results obtained for the kpectra
parameters from the gravel deposit. For such sediments, a stereo photogrigohy sys
would produce better results, although perhaps at slightly lower resolution aiadl spat
frequency scales. Other alternatives such as laser profilinretoyaath considering as

options for collecting seafloor profile data.
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A.7. Tables for Appendix A

Table A.1. Sediment profile image (SPI) sample site locations for the
Piscataqua River study area.

Sample code Time Latitude Longitude

(UTC) (degrees decimal (degrees decimal

minutes) minutes)

PSPI1 16:08:17 43 03.484 N 070 42.156 W
PSPI2 16:11:55 43 03.587 N 070 42.207 W
PSPI3 16:14:55 43 03.706 N 070 42.237 W
PSPI4 16:25:40 43 03.814 N 070 42.267 W
PSPI5 16:29:00 43 03.919 N 070 42.270 W
PSPI6 16:31:30 43 03.994 N 070 42.297 W
PSPI7 16:34:00 43 04.086 N 070 42.319 W
PSPI8 16:36:10 43 04.181 N 070 42.322 W
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Table A.2. Values of slope and intercept describing one-dimensional spectra from

sediment profile images collected in the lower Piscataqua River, 2003.

Pspi  Slope Int SedClass Note Facies

1 -3.4003 0.0007068  Pebble,Cobble - Pebble-cobble

gravel deposit

5 -2.1622 0.0002331  gravelly-Sand  gravel-size Rippled sand
shell fragments dunes

6 -2.1747 0.0001502  gravelly-Sand  gravel-size Rippled sand
shell fragments dunes

7 -2.5739 0.0002969  gravelly-Sand  gravel-size Rippled sand
shell fragments dunes

8 -2.4186 0.0002060  gravelly-Sand  gravel-size Rippled sand

shell fragments dunes
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A.8. Figures for Appendix A
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Sediment Profile Imagery
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Figure A.1. Sediment profile image (SPI) sample site locations in
the lower Piscataqua River.
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Figure A.2. Sediment profile image, seafloor profile and spectrum from
Piscataqua River SPI sample site 1 (slope = -3.4003, intercept = 0.0007068).
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Figure A.3. Sediment profile image, seafloor profile and spectrum from
Piscataqua River SPI sample site 5 (slope = -2.1622 , intercept =
0.0002331).
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Figure A.4. Sediment profile image, seafloor profile and spectrum from
Piscataqua River SPI sample site 7 (slope = -2.5739, intercept =
0.0002969).
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APPENDIX B

DATA AND IMAGES USED FOR SEDIMENT GRAIN-SIZE

CHARACTERIZATION
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B-1. SEDIMENT GRAIN-SIZE DISTRIBUTION DATA FROM

SAMPLES, GRAVEL NOT SEPARATED; USGS ANALYSIS
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Table B.1. Sediment grain-size analysis data for the lower Piscatagpra BsGS

method.
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Table B.1 (Continued). Sediment grain-size analysis data for the lowatd®jsa River;
USGS method.
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Table B.1 (Continued). Sediment grain-size analysis data for the lowatd®jsa River;
USGS method.
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Table B.1 (Continued). Sediment grain-size analysis data for the lowatd®jsa River;
USGS method.
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Table B.1 (Continued). Sediment grain-size analysis data for the lowatd®jsa River;
USGS method.
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Table B.1 (Continued). Sediment grain-size analysis data for the lowatd®jsa River;
USGS method.

224



Table B.1 (Continued). Sediment grain-size analysis data for the lowatd®jsa River;
USGS method.
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Table B.1 (Continued). Sediment grain-size analysis data for the lowatd®jsa River;
USGS method.
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B-2. GRAIN-SIZE STATISTICS FROM GRADISTAT, SAMPLEATA

WITH GRAVEL NOT SEPARATED
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Table B.2. Sediment grain-size analysis data for the lower Piscatacgra Ri

GRADISTAT results, gravel not-separated.

228



Table B.2 (Continued). Sediment grain-size analysis data for the lowatd®jsa River;
GRADISTAT results, gravel not-separated.
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Table B.2 (Continued). Sediment grain-size analysis data for the lowatd®jsa River;
GRADISTAT results, gravel not-separated.
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Table B.2 (Continued). Sediment grain-size analysis data for the lowatd®jsa River;
GRADISTAT results, gravel not-separated.
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Table B.2 (Continued). Sediment grain-size analysis data for the lowatd®jsa River;
GRADISTAT results, gravel not-separated.
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Table B.2 (Continued). Sediment grain-size analysis data for the lowatd®jsa River;
GRADISTAT results, gravel not-separated.
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Table B.2 (Continued). Sediment grain-size analysis data for the lowatd®jsa River;
GRADISTAT results, gravel not-separated.
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Table B.2 (Continued). Sediment grain-size analysis data for the lowatd®jsa River;
GRADISTAT results, gravel not-separated.
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Table B.2 (Continued). Sediment grain-size analysis data for the lowatd®jsa River;
GRADISTAT results, gravel not-separated.
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B-3. GRAIN-SIZE STATISTICS FROM GRADISTAT, SAMPLEATA

WITH GRAVEL-SEPARATED
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Table B.3. Sediment grain-size analysis data for the lower Piscatacgra Ri
GRADISTAT results, gravel fraction separated.
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Table B.3 (Continued). Sediment grain-size analysis data for the lowatd®jsa River;
GRADISTAT results, gravel fraction separated.

239



Table B.3 (Continued). Sediment grain-size analysis data for the lowatd®jsa River;
GRADISTAT results, gravel fraction separated.
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Table B.3 (Continued). Sediment grain-size analysis data for the lowatd®jsa River;
GRADISTAT results, gravel fraction separated.
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Table B.3 (Continued). Sediment grain-size analysis data for the lowatd®jsa River;
GRADISTAT results, gravel fraction separated.
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Table B.3 (Continued). Sediment grain-size analysis data for the lowatd®jsa River;
GRADISTAT results, gravel fraction separated.
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Table B.3 (Continued). Sediment grain-size analysis data for the lowatd®jsa River;
GRADISTAT results, gravel fraction separated.
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Table B.3 (Continued). Sediment grain-size analysis data for the lowatd®jsa River;
GRADISTAT results, gravel fraction separated.
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Table B.3 (Continued). Sediment grain-size analysis data for the lowatd®jsa River;
GRADISTAT results, gravel fraction separated.
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Table B.3 (Continued). Sediment grain-size analysis data for the lowatd®jsa River;
GRADISTAT results, gravel fraction separated.
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Table B.3 (Continued). Sediment grain-size analysis data for the lowatd®jsa River;
GRADISTAT results, gravel fraction separated.
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B-4. DISTRIBUTION PLOTS FROM SAMPLES, GRAVEL
SEPARATED AND LITHOGENIC AND BIOGENIC PARTS

SEPARATED
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B-5. Images Used For Estimating Sediment Graie Bercent Coverage

Area Distributions
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B-6. SAMPLE-VERSUS-IMAGE SEDIMENT GRAIN SIZE

HISTOGRAM PLOTS USING RECOMBINED CLASSES
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APPENDIX C

NOAA VIDEO INTERPRETATION METHODOLOGY: USVI 2004

Provided by: T. Battista and M. Kendall (NOAA, NOS, NCCOS, CCMA, Bioggigra
Program).
The benthic habitat of six seafloor video transects was assessed by visual
interpretation. The habitat was classified using three hierarchieddle
1. Structure
2. Substrate

3. Cover

Structure referred to the broad-scale underlying habitat upon which biotic and
abiotic matter or organisms accumulated. The five structure types are:
Colonized pavement
Colonized pavement with sand channels
Sand
Scattered coral and rock in sand

Other (if selected was described)

Substrate denotes the visible abiotic components of the bottom which make up the

structure and serve as a potential surface on which organisms can growtor Bttar
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substrate classes, considered mutually exclusive and exhaustive, wenecch@ss
percent of the visible bottom. These were:

Consolidated material

Sand

Rubble (~2-10 cm)

Cobble (~20 cm)

Cover referred to the biotic component of the sea floor and was measured as
percent of the visible bottom. The biota was divided among four mutually-exclusive
categories that are differentiated by their size and shape. A sum of altategories is
provided in the data as a measure of total colonization. If organisms could not be
unquestionably identified into one of the four cover categories it was added tathe tot
colonization sum, but not to any other cover category. Cover was distinguished as:

Sponge (Phylum Porifera)
Soft Coral (Subclass Octocorallia and subclass Ceriantipatharia)
Hard Coral (Subclass Hexacorallia)

Algae (Phylums Phaeophyta, Chlorophyta and Rhodophyta)

An algal veneer was present on many hard bottom substrates and we attempted to
guantify its extent. In many instances the absence of color made quaatificat
impossible. In these instances a value of yes was added to the algal wdteer fi
Habitat relief was also recorded. It was defined as either high or low emiifiet areas

where the abiotic vertical range was greater than or less than 1 foettresly.
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Habitat was evaluated every ten seconds, however due to extreme variability
camera height, not all components of the habitat could be recorded consistently. To
compensate for potential problems in scale and unknown data values, each record was
differentiated into one of five distance classes. The distinct distarsseslavere
selected based on which components of the habitat, defined hierarchically usitugestruc
substrate and cover, were visible. Notes were recorded to describe spetiahs
when the classification system was not suitable or sufficient. Cover wasddintdegwo
groups based on organism size generating two distance classes, because in many
assessments large organisms were visible, when smaller ones were hodlistzace
class (and the corresponding visible habitat components) is listed below:

1. Too close or too far (ho components)

2. Far (only structure)

3. Far (only structure and substrate)

4. Far (only structure, substrate and large organisms)

5. Appropriate Distance (structure, substrate and large and small organisms)

Caveats

Approximate positional accuracy is ~20m. The camera was unable to dive deeper
than approximately 100 feet and therefore videos are biased shallow waterssaimple
benthic habitat. Extreme variability in camera height produced unstandardized,
inconsistent habitat cover estimates by varying spatial scale. Thismrolie
exaggerated at low camera heights. For instance, when the camerafwas flie

bottom a single sponge could produce 100% sponge cover estimates, even if most of the
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surrounding habitat was sand. At the same location a greater camera height would have
greatly reduced the sponge cover estimate. When the camera was Yeny fthe
bottom the ten second time interval between observations was inadequate and a large
proportion of the same bottom was evaluated in contiguous examinations. The same
problem arose when the camera was swinging.

In a few instances camera listing (tilt) caused habitat distortions.n ke
camera was vertical it was extremely difficult to assess 3-dimeaigly. This loss of
data impeded identity of cover, probably reduced cover estimates of gorgani

made it difficult to assess relief.
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